精英家教网 > 高中数学 > 题目详情

【题目】已知中,边,令,过边上一点(异于端点)引边的垂线,垂足为,再由引边的垂线,垂足为,又由引边的垂线,垂足为,同样的操作连续进行,得到点列,设);

1)求

2)结论是否正确?请说明理由;

3)若对于任意,不等式恒成立,求的取值范围;

【答案】1;(2)正确;见解析(3

【解析】

1)根据平面向量的模长公式与数量积运算法则,求出

2)结论正确,由余弦定理,结合平面向量的线性表示与坐标表示,求出

3)画出图形,结合图形,得出的关系,即构成一个等比数列,求出的表达式,再根据题意求出的取值范围.

1中,

2)结论正确,由(1)知,

由余弦定理得

所以,

3)画出图形,如图所示,结合图形,可得,则

构成一个等比数列,公比为

,又

的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,下顶点为为椭圆的左、右焦点,过右焦点的直线与椭圆交于两点,且的周长为.

(I)求椭圆的方程;

(II)经过点的直线与椭圆交于不同的两点 (均异于点),试探求直线的斜率之和是否为定值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(Ⅰ)证明:PB∥平面AEC;

(Ⅱ)设PC与平面ABCD所成的角的正弦为,AP=1,AD=,求三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知拋物线C经过点,其焦点为FM为抛物线上除了原点外的任一点,过M的直线lx轴、y轴分别交于AB两点.

求抛物线C的方程以及焦点坐标;

的面积相等,证明直线l与抛物线C相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,中点,侧棱,底面为直角梯形,其中平面分别是线段上的动点,且.

1)求证:平面

2)当三棱锥的体积取最大值时,求到平面的距离;

3)在(2)的条件下求与平面所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的两个焦点分别为,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.

(1)求椭圆C的方程;

(2)过点M(1,0)的直线与椭圆C相交于AB两点,设点N(3,2),记直线ANBN的斜率分别为k1k2,求证:k1+k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形的边长为2分别为的中点,以为折痕把折起,使点到达点的位置,平面平面.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个说法,其中正确的是( )

A.命题“若,则”的否命题是“若,则

B.”是“双曲线的离心率大于”的充要条件

C.命题“”的否定是“

D.命题“在中,若,则是锐角三角形”的逆否命题是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,长轴的左、右端点分别为.

1)求椭圆C的方程;

2)设直线与椭圆C交于PQ两点,直线交于S,试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

同步练习册答案