精英家教网 > 高中数学 > 题目详情
20.设θ在第二象限,且sin($\frac{θ}{2}$+$\frac{3}{2}$π)>$\frac{1}{2}$,则$\frac{\sqrt{1-sinθ}}{cos\frac{θ}{2}-sin\frac{θ}{2}}$的值为(  )
A.1B.-1C.1或-1D.不能确定

分析 由θ的象限可得$\frac{θ}{2}$在第一或三象限,再由题意可得cos$\frac{θ}{2}$为负值可得$\frac{θ}{2}$在第三象限,可得sin$\frac{θ}{2}$>-$\frac{\sqrt{3}}{2}$,但不能确定cos$\frac{θ}{2}$和sin$\frac{θ}{2}$的大小,去绝对值可得.

解答 解:∵θ在第二象限,即2kπ<θ<2kπ+π,k∈Z,
∴kπ<$\frac{θ}{2}$<kπ+$\frac{π}{2}$,k∈Z,即$\frac{θ}{2}$在第一或三象限,
又∵sin($\frac{θ}{2}$+$\frac{3}{2}$π)>$\frac{1}{2}$,
∴由诱导公式可得-cos$\frac{θ}{2}$=sin($\frac{θ}{2}$+$\frac{3}{2}$π)>$\frac{1}{2}$,
∴cos$\frac{θ}{2}$<-$\frac{1}{2}$,∴$\frac{θ}{2}$在第三象限,
∴sin$\frac{θ}{2}$=-$\sqrt{1-co{s}^{2}\frac{θ}{2}}$>-$\frac{\sqrt{3}}{2}$,
∴$\frac{\sqrt{1-sinθ}}{cos\frac{θ}{2}-sin\frac{θ}{2}}$=$\frac{\sqrt{(cos\frac{θ}{2}-sin\frac{θ}{2})^{2}}}{cos\frac{θ}{2}-sin\frac{θ}{2}}$=$\frac{|cos\frac{θ}{2}-sin\frac{θ}{2}|}{cos\frac{θ}{2}-sin\frac{θ}{2}}$=±1
故选:C

点评 本题考查三角函数化简求值,涉及同角三角函数基本关系和分类讨论,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若以原点O为圆心的圆同时经过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点A1及右顶点A2,且被过焦点F(c,0)的直线l:x=c分成弧长为2:1的两端圆弧,则该椭圆的离心率e等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC中,∠A=60°,∠B=75°,c=5$\sqrt{2}$.
(1)求∠C的度数;
(2)求∠A的对边a的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.两单位向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,试向量$\overrightarrow{c}$=2$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{d}$=3$\overrightarrow{b}$-$\overrightarrow{a}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\frac{π}{2}$<α<π,tanα-$\frac{1}{tanα}$=-$\frac{3}{2}$.
(1)求tanα的值;
(2)求$\frac{cos(\frac{3π}{2}+α)-cos(π-α)}{sin(\frac{π}{2}-α)}$的值;
(3)求2sin2α-sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求经过A(6,0),B(5,-3),C(3,1)三点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.$\overrightarrow{AC}$-$\overrightarrow{BC}$=(  )
A.$\overrightarrow{AB}$B.$\overrightarrow{0}$C.$\overrightarrow{BA}$D.$\overrightarrow{BC}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数z满足(3+4i)z=|3-4i|,其中i为虚数单位,则z的虚部为(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设命题p:实数x满足x2-4ax+3a2<0,命题q:实数x满足|x-3|<1.
(1)若a=1,且p∧q为假,求实数x的取值范围;
(2)若a>0,且,¬q是¬p的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案