精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知曲线为参数),在以原点为极点,轴的正半轴为极轴建立的极坐标系中,直线的极坐标方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)过点且与直线平行的直线两点,求点两点的距离之积.

【答案】(1);(2)1。

【解析】

(1)消去曲线的参数方程中的参数后可得普通方程,运用转化公式并结合直线的极坐标方程可得直线的直角坐标方程.(2)由题意得到直线的参数方程,代入曲线的普通方程后,再根据直线参数方程中参数的几何意义求解.

(1)消去方程为参数)中的参数,可得曲线的普通方程为

,得

代入上式可得

所以直线的直角坐标方程为

(2)由题意可得直线的倾斜角为,且过点

所以直线的参数方程为为参数),

把参数方程代入方程,化简得

两点所对应的参数分别为

所以.

即点两点的距离之积为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列叙述正确的是(

A.相关关系是一种确定性关系,一般可分为正相关和负相关

B.回归直线一定过样本点的中心

C.在回归分析中,的模型比的模型拟合的效果好

D.某同学研究卖出的热饮杯数与气温(℃)时,一定可卖出杯热饮

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】21世纪城的街道都是东西向和南北向,为了加强安全管理,在一些十字路口设置保安亭(任何两个保安亭都不在同一街道上),以两个保安亭为其两个顶点、街道为边围成的矩形称为一个安全区,安全区(包括边界)内保安亭的个数称为该安全区的安全强度.如果世纪城两个方向的街道都至少有,且任何两条不平行的街道都交成一个十字路口,今按要求选定个十字路口设置保安亭,求安全强度最大的安全区的安全强度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个班级(各40名学生)进行一门考试,为易于统计分析,将甲、乙两个班学生的成绩分成如下四组:,并分别绘制了如下的频率分布直方图:

规定:成绩不低于90分的为优秀,低于90分的为不优秀.

1)根据这次抽查的数据,填写下面的列联表:

优秀

不优秀

合计

甲班

乙班

合计

2)根据(1)中的列联表,能否有的把握认为成绩是否优秀与班级有关?

附:临界值参考表与参考公式

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上.

(1)求椭圆的方程;

(2)若不过原点的直线与椭圆相交于两点,与直线相交于点,且是线段的中点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本.法国的20本.日本的40本.犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用.出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国.礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天名读书者进行调查,将他们的年龄分成6段: 后得到如图所示的频率分布直方图.问:

(1)估计在40名读书者中年龄分布在的人数;

(2)求40名读书者年龄的平均数和中位数;

(3)若从年龄在的读书者中任取2名,求恰有1名读书者年龄在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆上任取一点,过点轴的垂线段为垂足.当点在圆上运动时,线段的中点形成轨迹

1)求轨迹的方程;

2)若直线与曲线交于两点,为曲线上一动点,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型商场在2018年国庆举办了一次抽奖活动抽奖箱里放有3个红球,3个黑球和1个白球这些小球除颜色外大小形状完全相同,从中随机一次性取3个小球,每位顾客每次抽完奖后将球放回抽奖箱活动另附说明如下:

凡购物满元者,凭购物打印凭条可获得一次抽奖机会;

凡购物满元者,凭购物打印凭条可获得两次抽奖机会;

若取得的3个小球只有1种颜色,则该顾客中得一等奖,奖金是一个10元的红包;

若取得的3个小球有3种颜色,则该顾客中得二等奖,奖金是一个5元的红包;

若取得的3个小球只有2种颜色,则该顾客中得三等奖,奖金是一个2元的红包.

抽奖活动的组织者记录了该超市前20位顾客的购物消费数据单位:元,绘制得到如图所示的茎叶图.

求这20位顾客中获得抽奖机会的顾客的购物消费数据的中位数与平均数结果精确到整数部分

记一次抽奖获得的红包奖金数单位:元X,求X的分布列及数学期望,并计算这20位顾客在抽奖中获得红包的总奖金数的平均值假定每位获得抽奖机会的顾客都会去抽奖

查看答案和解析>>

同步练习册答案