【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
支付金额 支付方式 | 不大于2000元 | 大于2000元 |
仅使用A | 27人 | 3人 |
仅使用B | 24人 | 1人 |
(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;
(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.
【答案】(Ⅰ)400人;
(Ⅱ);
(Ⅲ)见解析.
【解析】
(Ⅰ)由题意利用频率近似概率可得满足题意的人数;
(Ⅱ)利用古典概型计算公式可得上个月支付金额大于2000元的概率;
(Ⅲ)结合概率统计相关定义给出结论即可.
(Ⅰ)由图表可知仅使用A的人数有30人,仅使用B的人数有25人,
由题意知A,B两种支付方式都不使用的有5人,
所以样本中两种支付方式都使用的有,
所以全校学生中两种支付方式都使用的有(人).
(Ⅱ)因为样本中仅使用B的学生共有25人,只有1人支付金额大于2000元,
所以该学生上个月支付金额大于2000元的概率为.
(Ⅲ)由(Ⅱ)知支付金额大于2000元的概率为,
因为从仅使用B的学生中随机调查1人,发现他本月的支付金额大于2000元,
依据小概率事件它在一次试验中是几乎不可能发生的,所以可以认为仅使用B的学生中本月支付金额大于2000元的人数有变化,且比上个月多.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程:
已知极坐标系的极点在直角坐标系的原点,极轴与x轴非负半轴重合,直线l的参数方程为:(t为参数,a∈[0,π),曲线C的极坐标方程为:p=2cosθ.
(Ⅰ)写出曲线C在直角坐标系下的标准方程;
(Ⅱ)设直线l与曲线C相交PQ两点,若|PQ|,求直线l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图像相邻两条对称轴间的距离为,且,则以下命题中为假命题的是( )
A.函数在上是增函数.
B.函数图像关于点对称
C.函数的图象可由的图象向左平移个单位长度得到
D.函数的图象关于直线对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:
x(年) | 2 | 3 | 4 | 5 | 6 |
y(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y对x呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求直线与曲线公共点的极坐标;
(2)设过点的直线交曲线于,两点,且的中点为,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-A1B1C1中,侧面B1BCC1是正方形,M,N分别是A1B1,AC的中点,AB⊥平面BCM.
(Ⅰ)求证:平面B1BCC1⊥平面A1ABB1;
(Ⅱ)求证:A1N∥平面BCM;
(Ⅲ)若三棱柱ABC-A1B1C1的体积为10,求棱锥C1-BB1M的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com