【题目】已知向量 =(3,﹣1),| |= , =﹣5, =x +(1﹣x) .
(Ⅰ)若 ,求实数x的值;
(Ⅱ)当| |取最小值时,求 与 的夹角的余弦值.
【答案】解:(Ⅰ)设 =(m,n),
∴ ,
解得 或 ,
当 =(﹣1,2)时,
∴ =x(3,﹣1)+(1﹣x)(﹣1,2)=(4x﹣1,2﹣3x),
∵ ,
∴3(4x﹣1)﹣(2﹣3x)=0,
解得x= ,
当 =(﹣2,﹣1)时,
∴ =x(3,﹣1)+(1﹣x)(﹣2,﹣1)=(5x﹣2,﹣1),
∵ ,
∴3(5x﹣2)+1=0,
解得x= ,
(Ⅱ)设 与 的夹角θ
由(Ⅰ)可知,当 =(﹣1,2)时, =(4x﹣1,2﹣3x),
则| |2=(4x﹣1)2+(2﹣3x)2=25x2﹣20x+5=25(x﹣ )2+1,
当x= 时,| |取最小值,则| |=1, =( , ),
∴ =﹣ + =1,| |=
∴cosθ= =
当 =(﹣2,﹣1)时, =(5x﹣2,﹣1),
则| |2=(5x﹣2)2+(﹣1)2=25(x﹣ )2+1,
当x= 时,| |取最小值,则| |=1, =(0,﹣1),
∴ =1,| |=
∴cosθ= =
【解析】(Ⅰ)根据向量的数量积和向量的模,先求出 ,再根据向量的垂直即可求出x的值,(Ⅱ)根据二次函数的性质即可求出x的值,再根据向量的夹角公式即可求出.
科目:高中数学 来源: 题型:
【题目】极坐标系与直角坐标系xOy取相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为 为参数).曲线C的极坐标方程为 .
(1)求直线l的倾斜角和曲线C的直角坐标方程;
(2)设直线C与曲线C交于A,B两点,与x轴的交点为M,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(2)若二面角P﹣CD﹣A的大小为45°,求二面角P﹣CE﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 .有序数组 经m次变换后得到数组 ,其中 , ( 1,2, ,n), , .
例如:有序数组 经1次变换后得到数组 ,即 ;经第2次变换后得到数组 .
(1)若 ,求 的值;
(2)求证: ,其中 1,2, ,n.(注:当 时, , 1,2, ,n,则 .)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 ,则下列结论正确的是( )
①f(x)的图象关于直线 对称
②f(x)的图象关于点 对称
③f(x)的图象向左平移 个单位,得到一个偶函数的图象
④f(x)的最小正周期为π,且在 上为增函数.
A.③
B.①③
C.②④
D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P﹣ABCD的底面ABCD是菱形,∠ABC=60°,AB=PC=2, .
(1)求证:平面PAD⊥平面ABCD;
(2)求二面角A﹣PC﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3﹣6x2+9x,g(x)= x3﹣ x2+ax﹣ (a>1)若对任意的x1∈[0,4],总存在x2∈[0,4],使得f(x1)=g(x2),则实数a的取值范围为( )
A.(1, ]??
B.[9,+∞)??
C.(1, ]∪[9,+∞)??
D.[ , ]∪[9,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com