精英家教网 > 高中数学 > 题目详情
11.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{g(x),x>0}\end{array}\right.$,若g(x)是奇函数.则g(x)=-2-x

分析 设x>0,则-x<0,f(-x)=2-x=-f(x),即可得出结论.

解答 解:设x>0,则-x<0,f(-x)=2-x=-f(x),
∴g(x)=-2-x
故答案为:-2-x

点评 本题考查函数的解析式,考查奇函数的性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.向量$\overline a=(sinx,\frac{1}{2}),\overline b=(\sqrt{3}cosx+sinx,-1)$,函数$f(x)=\overline a•\overline b$,
(1)求函数f(x)的最小正周期;
(2)求f(x)在区间$[{\frac{π}{4},\frac{π}{2}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,已知当A=$\frac{π}{6}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=tanA时,△ABC的面积为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知四棱台ABCD-A1B1C1D1的上下底面分别是边长为2和4的正方形,AA1=4且AA1⊥底面ABCD,点P为AA1的中点.
(1)求证:AB1⊥平面PBC;
(2)在BC上找一点Q,使得PQ∥平面CDD1C1,并求三棱锥P-QBB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1]时,f(x)=1-x2.函数$g(x)=\left\{\begin{array}{l}lgx,x>0\\|\frac{1}{2}x+2|,x≤0\end{array}\right.$,则函数h(x)=f(x)-g(x)在区间[-5,5]内的零点个数为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设f(x)是R上的偶函数,且在[0,+∞)上是增函数,若f(-3)=0,则f(x)<0的解集是(-3,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若(3x-1)55=a0+a1x+…+a55x55,求|a1|+|a2|+…+|a55|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知正四棱锥的底面边长为$\sqrt{2}$,高为1,则这个正四棱锥的外接球的表面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设两点A、B的坐标为A(-1,0)、B(1,0),若动点M满足直线AM与BM的斜率之积为-2,则动点M的轨迹方程为(  )
A.x2-$\frac{{y}^{2}}{2}$=1B.x2-$\frac{{y}^{2}}{2}$=1(x≠±1)C.x2+$\frac{{y}^{2}}{2}$=1D.x2+$\frac{{y}^{2}}{2}$=1(x≠±1)

查看答案和解析>>

同步练习册答案