精英家教网 > 高中数学 > 题目详情

【题目】下列问题中,最适合用分层随机抽样抽取样本的是(

A.10名同学中抽取3人参加座谈会

B.某社区有500个家庭,其中高收入的家庭125个,中等收入的家庭280个,低收入的家庭95个,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本

C.1000名工人中,抽取100名调查上班途中所用时间

D.从生产流水线上,抽取样本检查产品质量

【答案】B

【解析】

依次判断每个选项:A适合用简单随机抽样;CD适合用系统抽样;B中总体个体差异明显,适合用分层随机抽样,得到答案.

A中总体个体无明显差异且个数较少,适合用简单随机抽样;

CD中总体个体无明显差异且个数较多,适合用系统抽样;

B中总体个体差异明显,适合用分层随机抽样.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次人才招聘会上,有一家公司的招聘员告诉你,我们公司的收入水平很高”“去年,在50名员工中,最高年收入达到了200万,员工年收人的平均数是10",而你的预期是获得9万元年薪.

1)你是否能够判断年薪为9万元的员工在这家公司算高收入者?

2)如果招聘员继续告诉你,员工年收入的变化范围是从3万到200,这个信息是否足以使你作出自己是否受聘的决定?为什么?

3)如果招聘员继续给你提供了如下信息,员工收人的第一四分位数为4.5万,第三四分位数为9.5万,你又该如何使用这条信息来作出是否受聘的决定?

4)根据(3)中招聘员提供的信息,你能估计出这家公司员工收入的中位数是多少吗?为什么平均数比估计出的中位数高很多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图设计一幅矩形宣传画,要求画面面积为4840,画面上下边要留8cm空白,左右要留5cm空白,怎样确定画面高与宽的尺寸,才能使宣传画所用纸张面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-5:不等式选讲】

已知函数

(Ⅰ)求不等式

(Ⅱ)若的图像与直线围成图形的面积不小于14,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国务院批准从2009年起,将每年8月8日设置为“全民健身日”,为响应国家号召,各地利用已有土地资源建设健身场所.如图,有一个长方形地块,边.地块的一角是草坪(图中阴影部分),其边缘线是以直线为对称轴,以为顶点的抛物线的一部分.现要铺设一条过边缘线上一点的直线型隔离带分别在边上(隔离带不能穿越草坪,且占地面积忽略不计),将隔离出的△作为健身场所.则△的面积为的最大值为____________(单位:).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在长方形中,的中点,为线段上一动点.现将沿折起,形成四棱锥.

(1)若重合,且(如图2).证明:平面

(2)若不与重合,且平面平面 (如图3),设,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】蚌埠市某中学高三年级从甲(文)、乙(理)两个科组各选出名学生参加高校自主招生数学选拔考试,他们取得的成绩的茎叶图如图所示,其中甲组学生的平均分是,乙组学生成绩的中位数是

1)求的值;

2)计算甲组位学生成绩的方差

3)从成绩在分以上的学生中随机抽取两名学生,求甲组至少有一名学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆C上的一点,椭圆C的离心率与双曲线的离心率互为倒数,斜率为直线l交椭圆CBD两点,且ABD三点互不重合.

1)求椭圆C的方程;

2)若分别为直线ABAD的斜率,求证:为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标制成下图其中”表示甲村贫困户,“”表示乙村贫困户.

则认定该户为“绝对贫困户”,若则认定该户为“相对贫困户”,若则认定该户为“低收入户”;

则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.

1)从甲村50户中随机选出一户,求该户为“今年不能脱贫的绝对贫困户的概率;

2)若从所有“今年不能脱贫的非绝对贫困户”中选3户,用表示所选3户中乙村的户数,求的分布列和数学期望

3)试比较这100户中,甲、乙两村指标的方差的大小(只需写出结论).

查看答案和解析>>

同步练习册答案