分析 (1)利用已知条件求出直线AC,BC的斜率kAC,kBC,通过${k_{AC}}•{k_{BC}}=-\frac{4}{9}$.求出动点C的轨迹方程.
(2)利用数量积为0,求出P的方程,然后与椭圆方程联立,求出交点坐标即可.
解答 (本小题满分14分)
解:(1)${k_{AC}}=\frac{y}{x+3}$(x≠-3),${k_{BC}}=\frac{y}{x-3}$(x≠3)
又${k_{AC}}•{k_{BC}}=-\frac{4}{9}$,∴$\frac{y}{x+3}•\frac{y}{x-3}=-\frac{4}{9}$(3分)
化简整理得$\frac{x^2}{9}+\frac{y^2}{4}=1$(x≠±3)(6分)
(2)设曲线C上存在点P(x,y)满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$$\overrightarrow{P{F_1}}=(-\sqrt{5}-x,-y)$ $\overrightarrow{P{F_2}}=(\sqrt{5}-x,-y)$
∴$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}={x^2}-5+{y^2}=0$(9分)
联立方程组$\left\{\begin{array}{l}{x^2}+{y^2}=5\\ \frac{x^2}{9}+\frac{y^2}{4}=1\end{array}\right.$,解得$\left\{\begin{array}{l}{x^2}=\frac{9}{5}\\{y^2}=\frac{16}{5}\end{array}\right.$(12分)
∴存在四个点满足条件,它们是:$({\frac{3}{5}\sqrt{5},\frac{4}{5}\sqrt{5}})$,$({-\frac{3}{5}\sqrt{5},\frac{4}{5}\sqrt{5}})$,$({\frac{3}{5}\sqrt{5},-\frac{4}{5}\sqrt{5}})$,$({-\frac{3}{5}\sqrt{5},-\frac{4}{5}\sqrt{5}})$(14分)
点评 本题考查轨迹方程的求法,圆锥曲线之间的关系的综合应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x-2y+6=0 | B. | 4x-2y+9=0 | C. | x+2y-34=0 | D. | 2x-y-18=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com