精英家教网 > 高中数学 > 题目详情
12.已知i是虚数单位,z1=x+yi(x,y∈R),且x2+y2=1,z2=(3+4i)z1+(3-4i)$\overline{z_1}$.
( I) 求证:z2∈R;
( II)求z2的最大值和最小值.

分析 (Ⅰ)求出z1的共轭复数,再代入计算即可证明,
(Ⅱ)设u=6x-8y,代入x2+y2=1消去y得,根据判别式法即可求出.

解答 解:(Ⅰ)证明∵z1=x+yi,$\overline{z}$1=x-yi(x,y∈R),
∴z1+$\overline{z}$1=2x,z1-$\overline{z}$1=2yi.
∴z2=(3+4i)z1+(3-4i)1
=3(z1+$\overline{{z}_{1}}$)+4i(z1-$\overline{z}$1).
=6x+8yi2=(6x-8y)∈R
(Ⅱ)解∵x2+y2=1,
设u=6x-8y,代入x2+y2=1消去y得
64x2+(6x-u)2=64.
∴100x2-12ux+u2-64=0.
∵x∈R,∴△≥0.
∴144u2-4×100(u2-64)≥0.
∴u2-100≤0.
∴-10≤u≤10.
∴z2的最大值是10,最小值是-10

点评 本题考查了复数的运算法则和利用判别式法求函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.甲、乙两人在罚球线投球命中的概率分别为$\frac{1}{2}$与$\frac{2}{5}$.
(1)若甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;
(2)若甲、乙两人在罚球线各投球两次,求这四次投球中至少一次命中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow a$=(4,3),$\overrightarrow b$=(1,-1).
(1)求$\overrightarrow a$与$\overrightarrow b$的夹角的余弦值;
(2)若向量3$\overrightarrow a$+4$\overrightarrow b$与λ$\overrightarrow a$-$\overrightarrow b$平行,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一对获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场,已知甲球队第5,6场获胜的概率均为$\frac{3}{5}$,但由于体力原因,第7场获胜的概率为$\frac{2}{5}$.
(1)求甲对以4:3获胜的概率;
(2)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,若sinA:sinB:sinC=1:$\sqrt{7}$:3,则∠B的大小为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.己知函数f(x)=ax2+bx+1(a>0)
(1)?x∈R,函数f($\frac{2{x}^{2}+3}{{x}^{2}+1}$)有最大值1,求函数f($\frac{2{x}^{2}+3}{{x}^{2}+1}$)的单调区间;
(2)已知?x0∈R,使|f(x0)|≤$\frac{1}{a}$与|f(x0+$\frac{2}{a}$)|≤$\frac{1}{a}$同时成立,求b2-4a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图1,已知四边形ABFD为直角梯形,$AB∥DF,∠ADF=\frac{π}{2},△ADE$为等边三角形,AD=DF=2AF=2,C为DF的质点,如图2,将平面AED、BCF分别沿AD、BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,连接EF、DF,设G为AE上任意一点.
(1)证明:DG∥平面BCF;
(2)求平面DEF与平面BCF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在正方体ABCD-A1B1C1D1中,BA1与平面AA1C1C所成的角等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设三个互不相等的数a,b,c成等比数列(a<b<c).其积为27,又a,b,c-4成等差数列,求a,b,c的值.

查看答案和解析>>

同步练习册答案