精英家教网 > 高中数学 > 题目详情
已知A、B、C是△ABC的三个内角,y=cotA+
2sinAcosA+cos ( B-C )

(1)若△ABC是正三角形,求y的值;
(2)若任意交换△ABC中两个角的位置,y的值是否变化?证明你的结论;
(3)若△ABC中有一内角为45°,求y的最小值.
分析:(1)把A=B=C=
π
3
直接代入要求的式子化简运算求得结果.
 (2)利用弦切互化以及积化和差与和差化积公式,化简函数y=
3-( cos2A+cos2B+cos2C)
sin2A+sin2B+sin2C
,显然,任意交换△ABC中两个角的位置,则y的值不会发生变化.
(3)若△ABC中有一内角为45°,不妨设A=45°,则B+C=135°,化简y 的解析式为 1+
2
1+
2
cos(B-C)

故当cos(B+C)=1(最大值)时,y有最小值为1+
2
1+
2
=2
2
-1.
解答:解:(1)若△ABC是正三角形,则A=B=C=
π
3

y=cotA+
2sinA
cosA+cos ( B-C )
=
3
3
+
3
1
2
+1
=
3

(2)∵y=cotA+
2sinA
cosA+cos ( B-C )
=
cos2A+cosAcos(B-C)+2sin2A
sinAcosA+sinAcos(B-C)
 
=
1+sin2A-cos(B+C)cos(B-C)
1
2
sin2A+sin(B+C)cos(B-C)
=
1+ 
1-cos2A
2
-
1
2
(cos2B+cos2C)
1
2
[sin2A+sin2B+sin2C]
 
=
3-( cos2A+cos2B+cos2C)
sin2A+sin2B+sin2C

∴若任意交换△ABC中两个角的位置,则y的值不会发生变化.
(3)若△ABC中有一内角为45°,不妨设A=45°,则B+C=135°.
y=
3-( cos2A+cos2B+cos2C)
sin2A+sin2B+sin2C
=
3-(cos2B+cos2C)
1+sin2B+sin2C
=
3-2cos(B+C)cos(B-C)
1+2sin(B+C)cos(B-C)

=
3+
2
cos(B-C)
1+
2
cos(B-C)
=1+
2
1+
2
cos(B-C)

故当cos(B+C)=1(最大值)时,y有最小值为1+
2
1+
2
=2
2
-1.
点评:本题考查弦切互化,积化和差与和差化积公式,利用单调性求函数的最值,式子的变形是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、已知a,b,c是三条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C是直线l上的三点,向量
OA
OB
OC
满足
OA
-(y+1-lnx)
OB
+
1-x
ax
OC
=
o
,(O不在直线l上a>0)
(1)求y=f(x)的表达式;
(2)若函数f(x)在[1,∞]上为增函数,求a的范围;
(3)当a=1时,求证lnn>
1
2
+
1
3
+
1
4
+…+
1
n
,对n≥2的正整数n成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是直角三角形的三边,其中c为斜边,若实数M使不等式
1
a
+
1
b
+
1
c
M
a+b+c
恒成立,则实数M的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知A、B、C是锐角△ABC的三个内角,内量p=(1+sinA,1+cosA),q=(1+sinB,-1-cosB),则p与q的夹角是


  1. A.
    锐角
  2. B.
    钝角
  3. C.
    直角
  4. D.
    不确定

查看答案和解析>>

科目:高中数学 来源:0119 期末题 题型:单选题

已知a、b、c是直线,α、β是平面,给出下列五种说法:
①若a⊥b,b⊥c,则a∥c;   ②若a∥b,b⊥c,则a⊥c;
③若a∥β,bβ,则a∥b; ④若a与b异面,且a∥β,则b与β相交;
⑤若a∥c,α∥β,a⊥α,则c⊥β。
其中正确说法的个数是

[     ]

A.4
B.3
C.2
D.1

查看答案和解析>>

同步练习册答案