精英家教网 > 高中数学 > 题目详情

【题目】如图,某城市有一条公路正西方AO通过市中心O后转向北偏东α角方向的OB,位于该市的某大学M与市中心O的距离OM=3 km,且∠AOM=β,现要修筑一条铁路L,L在OA上设一站A,在OB上设一站B,铁路在AB部分为直线段,且经过大学M,其中tanα=2,cosβ= ,AO=15km.

(1)求大学M在站A的距离AM;
(2)求铁路AB段的长AB.

【答案】
(1)解:在△AOM中,A0=15,∠AOM=β,且cosβ= ,OM=3

由余弦定理可得:AM2=OA2+OM2﹣2OAOMcos∠AOM=(3 2+152﹣2×3 ×15× =72.

所以可得:AM=6 ,大学M在站A的距离AM为6 km


(2)解:∵cos ,且β为锐角,∴sinβ=

在△AOM中,由正弦定理可得: = ,即 = ,∴sin∠MAO=

∴∠MAO= ,∴∠ABO=α﹣

∵tanα=2,∴sin ,cosα=

∴sin∠ABO=sin( )=

又∵∠AOB=π﹣α,∴sin∠AOB=sin(π﹣α)=

在△AOB中,AO=15,由正弦定理可得: = ,即 ,∴解得AB=30 ,即铁路AB段的长AB为30 km


【解析】(1)在△AOM中,利用已知及余弦定理即可解得AM的值;(2)由cos ,且β为锐角,可求sinβ,由正弦定理可得sin∠MAO,结合tanα=2,可求sinα,cosα,sin∠ABO,sin∠AOB,结合AO=15,由正弦定理即可解得AB的值.
【考点精析】掌握正弦定理的定义是解答本题的根本,需要知道正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动点M(xy)到直线lx=4的距离是它到点N(1,0)的距离的2倍.

(1)求动点M的轨迹C的方程;

(2)过点P(0,3)的直线m与轨迹C交于AB两点,若APB的中点,求直线m的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是( )

A. yx具有正的线性相关关系

B. 若给变量x一个值,由回归直线方程=0.85x-85.71得到一个,则为该统计量中的估计值

C. 若该大学某女生身高增加1 cm,则其体重约增加0.85 kg

D. 若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为 ,数列满足在直线上.

(1)求数列 的通项

(2)令,求数列的前项和

(3)若,求对所有的正整数都有成立的的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ,求| |
(2)若 夹角为锐角,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一袋中装有6个黑球,4个白球.如果不放回地依次取出2个球.求:

(1)第1次取到黑球的概率;

(2)第1次和第2次都取到黑球的概率;

(3)在第1次取到黑球的条件下,第2次又取到黑球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD﹣A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1 , B1C1的中点,P是上底面的棱AD上的一点,AP= ,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足 ,其中 为非零常数.

(1)若 ,求证: 为等比数列,并求数列的通项公式;

(2)若数列是公差不等于零的等差数列.

①求实数 的值;

②数列的前项和构成数列,从中取不同的四项按从小到大排列组成四项子数列.试问:是否存在首项为的四项子数列,使得该子数列中的所有项之和恰好为2017?若存在,求出所有满足条件的四项子数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是圆O的切线.

查看答案和解析>>

同步练习册答案