精英家教网 > 高中数学 > 题目详情
(满分12分)已知:正方体中,棱长分别为的中点,的中点,

(1)求证://平面
(2)求:到平面的距离。
(1)见解析;(2)

试题分析:以为x、y、z轴建立空间直角坐标系,




(1)
设平面的法向量,则
,则,∵,∴,∴//平面
(2),则到平面的距离
点评:利用空间向量解答立体几何问题,将繁琐的证明转化成直观的向量坐标运算,降低了难度。恰当建立空间直角坐标系是关键。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥S - ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中点.

(Ⅰ)求证:AM∥面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值;
(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为,求sin的最大值,

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体中,与平面所成的角的余弦值为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m、n表示不同直线,表示不同平面,下列命题正确的是      (    )
A.若m‖,m‖ n,则n‖
B.若m,n,m‖,n‖,则
C.若, m,mn,则n‖
D.若, m,n‖m,n,则n‖

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

球内接正四棱锥的高为3,体积为6,则这个球的表面积是(   )
A.16πB.20πC.24πD.32π

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正三棱锥中,,的中点分别为,且,则正三棱锥外接球的表面积为                    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图所示的多面体,它的正视图为直角三角形,侧视图为正三角形,俯视图为正方形(尺寸如图所示),E为VB的中点.

(1)求证:VD∥平面EAC;
(2)求二面角A—VB—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个多面体的直观图和三视图如下:(其中分别是中点)

(1)求证:平面;
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示:一吊灯的下圆环直径为4m,圆心为O,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离(即)为2m,在圆环上设置三个等分点A1,A2,A3。点C为上一点(不包含端点O、B),同时点C与点A1,A2,A3,B均用细绳相连接,且细绳CA1,CA2,CA3的长度相等。设细绳的总长为
(1)设∠CA1O =(rad),将y表示成的函数关系式;
(2)请你设计,当角正弦值的大小是多少时,细绳总长最小,并指明此时 BC应为多长。

查看答案和解析>>

同步练习册答案