精英家教网 > 高中数学 > 题目详情
15.函数f(x)=x|2a-x|+2x,若函数f(x)在R上是增函数,则实数a的取值范围[-1,1].

分析 化简可得f(x)=$\left\{\begin{array}{l}{{x}^{2}-(2a-2)x,x≥2a}\\{-{x}^{2}+(2a+2)x,x<2a}\end{array}\right.$,从而利用分段函数及二次函数的性质可得$\left\{\begin{array}{l}{2a≤a+1}\\{a-1≤2a}\end{array}\right.$,从而解得.

解答 解:f(x)=x|2a-x|+2x
=$\left\{\begin{array}{l}{{x}^{2}-(2a-2)x,x≥2a}\\{-{x}^{2}+(2a+2)x,x<2a}\end{array}\right.$,
由二次函数的性质可知,
$\left\{\begin{array}{l}{2a≤a+1}\\{a-1≤2a}\end{array}\right.$,
解得,-1≤a≤1;
故答案为:[-1,1].

点评 本题考查了分段函数的性质的应用及二次函数的性质的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.(x-$\frac{2}{x}$)n展开式后有10项,则n=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,动点M与两定点A(-1,0),B(2,0)构成△MAB,且∠MBA=2∠MAB,求动点M的轨迹C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)是定义在(0,+∞)上的增函数,且f(xy)=f(x)+f(y),
(1)求f(1)的值;
(2)若f($\frac{1}{3}$)=-1,求满足f(x)-f($\frac{1}{x-2}$)≥2的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如下数据:
 处罚金额x(单位:元) 0 5 10 15 20
 会闯红灯的人数y 80 50 40 20 10
若用表中数据所得频率代替率.
(Ⅰ)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?
(Ⅱ)将选取的200人中会闯红灯的市民两类:A类市民在罚金不超过10元时就会改正行为;B类是其他市民.现对A类与B类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为B类市民的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知各项都为正数的数列{an}满足$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{n+2}}{{a}_{n+1}}$,且64a10-a4=0,记Sn是数列{an}的前n项和,则$\frac{{S}_{6}}{{a}_{1}-{S}_{3}}$的值为(  )
A.-$\frac{21}{8}$B.$\frac{21}{8}$C.-9D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知sinx=m,cos2x=m-$\frac{8}{25}$,x∈(0,π)
(Ⅰ)求m的值;
(Ⅱ)求tan(x-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知实数x,y满足$\frac{x}{1+i}$+$\frac{y}{1-i}$=$\frac{5}{1-2i}$,求x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C:x2+y2+2x-4y+3=0.
(1)直线l过点(-2,0)且被圆C截得的弦长为2,求直线l的方程;
(2)从圆C外一点P向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求|PM|的最小值.

查看答案和解析>>

同步练习册答案