精英家教网 > 高中数学 > 题目详情
5.已知球O的半径OP的长为1,O1是OP的中点,过O1作平面垂直于直线OP,交球面于小圆⊙O1,若A、B是小圆⊙O1圆弧上两点,且A、B之间的球面距离为$\frac{π}{3}$,则∠AO1B的大小为2arcsin$\frac{\sqrt{3}}{3}$(结果用反三角函数值表示).

分析 画出图形,通过A、B之间的球面距离为$\frac{π}{3}$,球的半径为1,求解△AO1B的边长,然后求解所求角.

解答 解:如图:球O的半径OP的长为1,O1是OP的中点,过O1作平面垂直于直线OP,交球面于小圆⊙O1,若A、B是小圆⊙O1圆弧上两点,且A、B之间的球面距离为$\frac{π}{3}$,
可得:OA=0B=1,∠AOB=$\frac{π}{3}$,OO1=$\frac{1}{2}$,则AO1=BO1=$\frac{\sqrt{3}}{2}$,AB=1.
sin$(\frac{1}{2}{∠AO}_{1}B)$=$\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$=$\frac{\sqrt{3}}{3}$,
∴$\frac{1}{2}{∠AO}_{1}B$=arcsin$\frac{\sqrt{3}}{3}$.
∠AO1B的大小为:2arcsin$\frac{\sqrt{3}}{3}$.
故答案为:2arcsin$\frac{\sqrt{3}}{3}$.

点评 本题考查球面距离以及相关计算,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.二次函数f(x)的最小值为-2,且f(0)=f(2)=1,则f(3)=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设全集U=Z,集合M={x|x=2k,k∈Z},P={x|x=2k+1,k∈Z},给定下列关系式:①M⊆P;②CuM=CuP;③CuM=P;④CuP=M.其中正确的式子有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.△ABC,∠A≥∠B≥∠C,角A,B,C对应的边a,b,c成等差数列,且a2+b2+c2=147,则b的取值范围为($\sqrt{42}$,7].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=$\frac{1}{1+x}$(x∈R,且x≠-1),g(x)=x2+2(x∈R).
(1)f(2),g(2)的值;
(2)f[g(2)]的值;
(3)求f(x)、g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a=$\frac{1}{2}$cos6°-$\frac{\sqrt{3}}{2}$sin6°,b=$\frac{2tan13°}{1+ta{n}^{2}13°}$,c=$\frac{sin50°}{2cos25°}$,比较a,b,c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.y=$\frac{\sqrt{sinx}+\sqrt{sinx+cosx}}{\sqrt{cosx}+\sqrt{sinx+cosx}}$的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是45°,则-2$\overrightarrow{a}$与3$\overrightarrow{b}$的夹角是$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l1和l2在x轴上的截距相等,且它们的倾斜角互补.若直线l1过点P(-3,3),且点Q(2,2)到直线l2的距离为1,求直线l1和直线l2的方程.

查看答案和解析>>

同步练习册答案