分析 画出图形,通过A、B之间的球面距离为$\frac{π}{3}$,球的半径为1,求解△AO1B的边长,然后求解所求角.
解答 解:如图:球O的半径OP的长为1,O1是OP的中点,过O1作平面垂直于直线OP,交球面于小圆⊙O1,若A、B是小圆⊙O1圆弧上两点,且A、B之间的球面距离为$\frac{π}{3}$,
可得:OA=0B=1,∠AOB=$\frac{π}{3}$,OO1=$\frac{1}{2}$,则AO1=BO1=$\frac{\sqrt{3}}{2}$,AB=1.
sin$(\frac{1}{2}{∠AO}_{1}B)$=$\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$=$\frac{\sqrt{3}}{3}$,
∴$\frac{1}{2}{∠AO}_{1}B$=arcsin$\frac{\sqrt{3}}{3}$.
∠AO1B的大小为:2arcsin$\frac{\sqrt{3}}{3}$.
故答案为:2arcsin$\frac{\sqrt{3}}{3}$.
点评 本题考查球面距离以及相关计算,考查空间想象能力以及计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com