分析 变形可得原式=($\frac{b}{a}$+$\frac{a}{b}$)+($\frac{c}{a}$+$\frac{a}{c}$)+($\frac{c}{b}$+$\frac{b}{c}$),由基本不等式求最值可得.
解答 解:∵a,b,c∈R+,∴$\frac{b+c}{a}$+$\frac{a+c}{b}$+$\frac{a+b}{c}$
=($\frac{b}{a}$+$\frac{a}{b}$)+($\frac{c}{a}$+$\frac{a}{c}$)+($\frac{c}{b}$+$\frac{b}{c}$)
≥2$\sqrt{\frac{b}{a}•\frac{a}{b}}$+2$\sqrt{\frac{c}{a}•\frac{a}{c}}$+2$\sqrt{\frac{c}{b}•\frac{b}{c}}$=6,
当且仅当$\frac{b}{a}$=$\frac{a}{b}$且$\frac{c}{a}$=$\frac{a}{c}$且$\frac{c}{b}$=$\frac{b}{c}$即a=b=c时取等号,
故答案为:6.
点评 本题考查基本不等式求最小值,化为可用基本不等式的形式是解决问题的关键,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,2] | B. | (0,4] | C. | (0,+∞) | D. | [2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com