精英家教网 > 高中数学 > 题目详情

【题目】为了丰富学生的课外文化生活,某中学积极探索开展课外文体活动的新途径及新形式,取得了良好的效果.为了调查学生的学习积极性与参加文体活动是否有关,学校对200名学生做了问卷调查,列联表如下:

参加文体活动

不参加文体活动

合计

学习积极性高

80

学习积极性不高

60

合计

200

已知在全部200人中随机抽取1人,抽到学习积极性不高的学生的概率为.

1)请将上面的列联表补充完整;

2)是否有99.9%的把握认为学习积极性高与参加文体活动有关?请说明你的理由;

3)若从不参加文体活动的同学中按照分层抽样的方法选取5人,再从所选出的5人中随机选取2人,求至少有1人学习积极性不高的概率.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

【答案】1)表格见解析;(2)有99.9%的把握认为学习积极性高与参加文体活动有关,理由见解析;(3

【解析】

1)计算学习积极性不高的有人,完善列联表得到答案.

2,对比临界值表得到答案.

3)有2人学习积极性高,设为,有3人学习积极性不高,设为,列出所有情况,统计满足条件的情况,得到概率.

1)根据题意,全部200人中随机抽取1人,抽到学习积极性不高的学生的概率为

则学习积极性不高的有人,

据此可得:列联表如下:

参加文体活动

不参加文体活动

合计

学习积极性高

80

40

120

学习积极性不高

20

60

80

合计

100

100

200

2)根据题意,由列联表可得:

故有99.9%的把握认为学习积极性高与参加文体活动有关;

3)根据题意,从不参加文体活动的同学中按照分层抽样的方法选取5人,有2人学习积极性高,设为,有3人学习积极性不高,设为,从中选取2人,

,共10种情况,

其中至少有1人学习积极性不高的有,共9种情况,

至少有1人学习积极性不高的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).在以为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为

(Ⅰ)求曲线的普通方程和直线的直角坐标方程;

(Ⅱ)设点,若直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:在平面四边形ABCD中,(如图1),若将沿对角线BD折叠,使(如图2.请在图2中解答下列问题.

1)证明:

2)求三棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把一个圆分成n(n≥2)个扇形,依次记为,每一扇形都可用红、白、蓝三种不同颜色的任一种涂色,要求相邻的扇形的颜色互不相同,问有多少种涂色法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )

A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件

B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高

C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致

D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上存在极大值,求的取值范围;

2)若轴是曲线的一条切线,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数,如果是偶数,就将它减半();如果是奇数,则将它乘31(),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数(首项)按照上述规则施行变换后的第6项为1(注:1可以多次出现),则的所有不同值的个数为(

A.3B.4C.5D.32

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1an=0(nN*),且成等差数列.

1)求数列{an}的通项公式;

2)令bn=(nN*),求数列{bn}的前n项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线在第一象限内的点到焦点F的距离为

(1)求抛物线的方程;

(2)若直线与抛物线C相交于AB两点,与圆相交于DE两点,O为坐标原点,,试问:是否存在实数a,使得|DE|的长为定值?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案