精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)是偶函数,且f(x)在[0,+∞)上的解析式是f(x)=2x+1,则f(x)在(-∞,0)上的解析式为f(x)=-2x+1.

分析 利用函数是偶函数,f(-x)=f(x),f(x)在[0,+∞)上的解析式是f(x)=2x+1,当x<0时,则-x>0,可求f(x)在(-∞,0)上的解析式.

解答 解:由题意,函数是偶函数,f(-x)=f(x),
当x≥0时,f(x)=2x+1,
那么:f(-x)=-2x+1=f(x),
∴f(x)=-2x+1,
故答案为:f(x)=-2x+1.

点评 本题考了函数解析式的求法,利用了函数是偶函数的性质求解.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知x0是函数f(x)=3x+$\frac{2}{1-x}$的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则(  )
A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列刻画一组数据离散程度的是(  )
A.平均数B.方差C.中位数D.众数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)是定义在[-1,1]上的奇函数,若m,n∈[-1,1],m+n≠0时,有$\frac{f(m)+f(n)}{m+n}$>0,则不等式$f(x+\frac{1}{2})<f(1-x)$的解集为$[0,\frac{1}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.2011年4月 25日,全国人大常委会公布《中华人民共和国个人所得税法修正案(草案)》,向社会公开征集意见.草案规定,公民全月工薪不超过3000元的部分不必纳税,超过3000元的部分为全月应纳税所得额.此项税款按下表分段累进计算.
级 数全月应纳税所得额税 率
1不超过 1500元的部分5%
2超过 1500元至4500元的部分10%
3超过 4500元至9000元的部分20%
依据草案规定,解答下列问题:
(1)李工程师的月工薪为8000元,则他每月应当纳税多少元?
(2)若某纳税人的月工薪不超过10000元,他每月的纳税金额能超过月工薪的8%吗?若能,请给出该纳税人的月工薪范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数y=f(x)是定义在(0,+∞)上的增函数,并满足f(x,y)=f(x)+f(y),f(4)=1
(1)求f(1)的值;
(2)若存在实数m,使f(m)=2,求m的值
(3)如果f(x2-4x-5)<2求x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,AP=1,AD=$\sqrt{3}$,E为线段PD上一点,记$\frac{PE}{PD}$=λ. 当λ=$\frac{1}{2}$时,二面角D-AE-C的平面角的余弦值为$\frac{2}{3}$.
(1)求AB的长;
(2)当λ=$\frac{1}{3}$时,求直线BP与直线CE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知底面为矩形的四棱锥D-ABCE,AB=1,BC=2,AD=3,DE=$\sqrt{5}$,DE⊥AE,G、F分别为AD,CE的中点,其中二面角D-AE-C的平面角的正切值为-tan2.
(1)求证:FG∥平面BCD;
(2)求二面角A-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平面区域Ω:$\left\{{\begin{array}{l}{3x+4y-18≤0}\\{x≥2}\\{y≥0}\end{array}}$,夹在两条斜率为-$\frac{3}{4}$的平行直线之间,且这两条平行直线间的最短距离为m.若点P(x,y)∈Ω,且mx-y的最小值为p,$\frac{y}{x+m}$的最大值为q,则pq等于(  )
A.$\frac{27}{22}$B.$\frac{2}{5}$C.$\frac{27}{25}$D.0

查看答案和解析>>

同步练习册答案