精英家教网 > 高中数学 > 题目详情

【题目】身体素质拓展训练中,人从竖直墙壁的顶点A沿光滑杆自由下滑到倾斜的木板上(人可看作质点),若木板的倾斜角不同,人沿着三条不同路径ABACAD滑到木板上的时间分别为t1t2t3,若已知ABACAD与板的夹角分别为70o90o105o,则(

A. t1>t2>t3 B. t1<t2<t3 C. t1=t2=t3 D. 不能确定t1t2t3之间的关系

【答案】A

【解析】

试题若以OA为直径画圆,则AB交圆周与E点,C点正好在圆周上,D点在圆周之内,AD的延长线交圆周与F点;设ACAO的夹角为α,则可知人从AC的时间为,可知与斜面的倾角无关,及人从A点滑到ECF的时间是相等的,则可知人从A点滑到BCD的时间关系是:t1>t2>t3,故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)若数列的前n项和,求数列的通项公式.

2)若数列的前n项和,证明为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本万元,每生产(百辆),需另投入成本万元,且.由市场调研知,每辆车售价万元,且全年内生产的车辆当年能全部销售完.

(1)求出2018年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售额-成本)

(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某中学甲、乙两班共有25名学生报名参加了一项 测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.

)求这两个班学生成绩的中位数及x的值;

)如果将这些成绩分为优秀(得分在175分 以上,包括175分)和过关,若学校再从这两个班获得优秀成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

从以下两个命题中任选一个进行证明:

时函数恰有一个零点;

时函数恰有一个零点;

如图所示当的图象“好像”只有一个交点,但实际上这两个函数有两个交点,请证明:当时,两个交点.

若方程恰有4个实数根,请结合的研究,指出实数k的取值范围不用证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)的定义域为R,对任意,有>-1,且f(1)=1,下列命题正确的是(  )

A. 是单调递减函数

B. 是单调递增函数

C. 不等式的解集为

D. 不等式的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入单位:千元与月储蓄单位:千元的数据资料,算得附:线性回归方程中,,其中为样本平均值.

求家庭的月储蓄y对月收入x的线性回归方程

判断变量xy之间是正相关还是负相关;

若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣lnx,g(x)=x2﹣ax.
(1)求函数f(x)在区间[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)﹣f(x),A(x1 , h(x1)),B(x2 , h(x2))(x1≠x2)是函数h(x)图象上任意两点,且满足 >1,求实数a的取值范围;
(3)若x∈(0,1],使f(x)≥ 成立,求实数a的最大值.

查看答案和解析>>

同步练习册答案