精英家教网 > 高中数学 > 题目详情
6.定义:若对定义域D内的任意两个x1,x2(x1≠x2),均有|f(x1)-f(x2)|<|x1-x2|成立,则称函数y=f(x)是D上的“平缓函数”.则以下说法正确的有(  )
①f(x)=-lnx+x为(0,+∞)上的“平缓函数”
②g(x)=sinx为R上的“平缓函数”
③h(x)=x2-x是为R上的“平缓函数”
④已知函数y=k(x)为R上的“平缓函数”,若数列{an}对?n∈N*总有|xn+1-xn|≤$\frac{1}{(2n+1)^{2}}$,则k(xn+1)-k(x1)<$\frac{1}{4}$.
A.0个B.1个C.2个D.3个

分析 对于①②③新定义函数类型的题目,解答时要先充分理解定义:“平缓函数”才能答题,对于(1)只需按照定义作差:|f(x1)-f(x2)|,然后寻求|f(x2)-f(x1)|≤|x2-x1|成立的条件.
对于④的解答稍微复杂一些,此处除了用到放缩外,还有添项减项的技巧应用及对数列拆项求和的充分利用.

解答 解:对于①,|f(x1)-f(x2)|=|-lnx1+x1-(-lnx2+x2)|=|ln$\frac{{x}_{2}}{{x}_{1}}$+x1-x2|≤|ln$\frac{{x}_{2}}{{x}_{1}}$|+|x1-x2|,故均有|f(x1)-f(x2)|<|x1-x2|不一定成立,
故f(x)=-lnx+x不为(0,+∞)上的“平缓函数”,故①错误;
对于②,设φ(x)=x-sinx,则φ'(x)=1-cosx≥0,则φ(x)=x-sinx是实数集R上的增函数,
不妨设x1<x2,则φ(x1)<φ(x2),即x1-sinx1<x2-sinx2
则sinx2-sinx1<x2-x1,①
又y=x+sinx也是R上的增函数,则x1+sinx1<x2+sinx2
即sinx2-sinx1>x1-x2,②
由①、②得-(x2-x1)<sinx2-sinx1<x2-x1
因此|sinx2-sinx1|<|x2-x1|,对x1<x2的实数都成立,
当x1>x2时,同理有|sinx2-sinx1|<|x2-x1|成立,
又当x1=x2时,不等式|sinx2-sinx1|=|x2-x1|=0,
故对任意的实数x1,x2∈R均 有|sinx2-sinx1|≤|x2-x1|,
因此sinx是R上的“平缓函数,故②正确;
对于③,取x1=3,x2=1,则|h(x1)-h(x2)|=4>|x1-x2|,因此h(x)=x2-x不是R上的“平缓函数”,故③错误,
对于④,函数y=k(x)为R上的“平缓函数,
则|k(x2)-k(x1)|≤|x2-x1|,所以|yn+1-yn|≤|xn+1-xn|,
因为|xn+1-xn|≤$\frac{1}{{(2n+1)}^{2}}$<$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),
而|yn+1-y1|=|(yn+1-yn)+(yn-yn-1)+(yn-1-yn-2)+…(y2-y1)|,
所以|yn+1-y1|≤|yn+1-yn|+|yn-1-yn-2|+…+|y2-y1|,
∴|yn+1-y1|≤$\frac{1}{4}$[($\frac{1}{n}$-$\frac{1}{n+1}$)+($\frac{1}{n-1}$-$\frac{1}{n}$)+…+(1-$\frac{1}{2}$)]=$\frac{1}{4}$(1-$\frac{1}{n+1}$)<$\frac{1}{4}$,故④正确.
故选:C.

点评 本题抽象函数、新定义函数类型的概念,不等式的性质,放缩法的技巧,对于新定义类型问题,在解答时要先充分理解定义才能答题,避免盲目下笔,遇到困难才来重头读题,费时费力,另外要在充分抓住定义的基础上,对式子的处理要灵活,各个式子的内在联系要充分挖掘出来,可现有结论向上追溯,看看需要哪些条件才能得出结果,再来寻求转化取得这些条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.变量 x、y满足线性约束条件$\left\{\begin{array}{l}{3x+y-2≤0}\\{y-x≤2}\\{y≥x-1}\end{array}\right.$,则目标函数z=(k+1)x-y,仅在点(0,2)取得最小值,则k的取值范围是(  )
A.k<-4B.-4<k<0>C.-2<k<0D.k>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{\frac{2}{x},x>1}\end{array}\right.$,则f(f(3))=$\frac{13}{9}$,方程f(f(x))=$\frac{1}{4}$的解集为-$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若a,b∈R,i为虚数单位,且a+2i=i(b+i),则a+b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).
(1)求证:不论m为何值,圆心在同一直线l上;
(2)与l平行的直线中,哪些与圆相交、相切、相离;
(3)求证:任何一条平行于l且与圆相交的直线被各圆截得的弦长相等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,二面角α-l-β为60°,点A、B分别为平面α和平面β上的点,点A到l的距离为|AC|=4,点B到l的距离为|BD|=5,|CD|=6,求:
(1)A与B两点间的距离|AB|;
(2)异面直线AB、CD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆x2+y2-4x-8y+m=0.
(1)若圆C与直线x+2y-5=0相交于M、N两点,且CM⊥CN(C为圆心),求m的值;
(2)在(1)的条件下,求以MN为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.经过点M(-m,3),N(5,-m)的直线的斜率为1,则m=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,内角A,B,C所对的边分别为a,b,c,且BC边上的高为$\frac{\sqrt{3}}{6}$a,则$\frac{c}{b}$+$\frac{b}{c}$取得最大值时,内角A的值为(  )
A.$\frac{π}{2}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

同步练习册答案