精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的右焦点为,且点在椭圆C上.

(1)求椭圆C的标准方程;

(2)过椭圆上异于其顶点的任意一点Q作圆的两条切线,切点分别为不在坐标轴上),若直线x轴,y轴上的截距分别为,证明:为定值;

(3)若是椭圆上不同两点,轴,圆E,且椭圆上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.

【答案】(1);(2)证明见解析;(3).

【解析】

(1)由焦点坐标确定出c的值,根据椭圆的性质列出ab的方程,再将P点坐标代入椭圆方程列出关于ab的方程,联立求出ab的值,确定出椭圆方程即可.

(2)由题意:确定出C1的方程,设点Px1y1),Mx2y2),Nx3y3),根据MN不在坐标轴上,得到直线PM与直线OM斜率乘积为﹣1,确定出直线PM的方程,同理可得直线PN的方程,进而确定出直线MN方程,求出直线MNx轴,y轴截距mn,即可确定出所求式子的值为定值.

(3)依题意可得符合要求的圆E,即为过点FP1P2的三角形的外接圆.所以圆心在x轴上.根据题意写出圆E的方程.由于圆的存在必须要符合,椭圆上的点到圆E距离的最小值是|P1E|,结合图形可得圆心E在线段P1P2上,半径最小.又由于点F已知,即可求得结论.

(1)∵椭圆C的右焦点为F(1,0),且点P(1,)在椭圆C上;

,解得a=2,b

∴椭圆C的标准方程为

(2)由题意:C1

设点Px1y1),Mx2y2),Nx3y3),

MN不在坐标轴上,∴kPM=﹣=﹣

∴直线PM的方程为yy2=﹣xx2),

化简得:x2x+y2y,①,

同理可得直线PN的方程为x3x+y3y,②,

P点的坐标代入①、②得

∴直线MN的方程为x1x+y1y

y=0,得m,令x=0得n

x1y1

又点P在椭圆C1上,

∴(2+3(2=4,

为定值.

(3)由椭圆的对称性,可以设P1mn),P2m,﹣n),点Ex轴上,设点Et,0),

则圆E的方程为:(xt2+y2=(mt2+n2

由内切圆定义知道,椭圆上的点到点E距离的最小值是|P1E|,

设点Mxy)是椭圆C上任意一点,则|ME|2=(xt2+y2

xm时,|ME|2最小,∴m=﹣,③,

又圆E过点F,∴(﹣2=(mt2+n2,④

P1在椭圆上,∴,⑤

由③④⑤,解得:t=﹣t=﹣

t=﹣时,m=﹣<﹣2,不合题意,

综上:椭圆C存在符合条件的内切圆,点E的坐标是(﹣,0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg f(1)=0,当x>0时,恒有f(x)=lgx.

(1)若不等式f(x)≤lgt的解集为A,且A(0,4],求实数t的取值范围;

(2)若方程f(x)=lg(8x+m)的解集为,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数对任意的满足:,当时,

1)求出函数在R上零点;

2)求满足不等式的实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的极值点的个数;

2)若有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:Cx=若不建隔热层,每年能源消耗费用为8万元。设fx)为隔热层建造费用与20年的能源消耗费用之和。

)求k的值及f(x)的表达式。

)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20191118日国际射联步手枪世界杯总决赛在莆田市综合体育馆开幕,这是国际射联步手枪世界杯总决赛时隔10年再度走进中国.为了增强趣味性,并实时播报现场赛况,我校现场小记者李明和播报小记者王华设计了一套播报转码法,发送方由明文密文(加密),接受方由密文明文(解密),已知加密的方法是:密码把英文的明文(真实文)按字母分解,其中英文的26个字母(不论大小写)依次对应1232626个自然数通过变换公式:,将明文转换成密文,如,即变换成,即变换成.若按上述规定,若王华收到的密文是,那么原来的明文是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点A为该椭圆的左顶点,过右焦点的直线l与椭圆交于BC两点,当轴时,三角形ABC的面积为18

求椭圆的方程;

如图,当动直线BC斜率存在且不为0时,直线分别交直线ABAC于点MN,问x轴上是否存在点P,使得,若存在求出点P的坐标;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南某地区10年间梅雨季节的降雨量单位:的频率分布直方图,试用样本频率估计总体概率,解答下列问题:

假设每年的梅雨季节天气相互独立,求该地区未来三年里至少有两年梅雨季节的降雨量超过350mm的概率.

老李在该地区承包了20亩土地种植杨梅,他过去种植的甲品种杨梅,平均每年的总利润为28万元而乙品种杨梅的亩产量与降雨量之间的关系如下面统计表所示,又知乙品种杨梅的单位利润为,请你帮助老李分析,他来年应该种植哪个品种的杨梅可以使总利润万元的期望更大?并说明理由.

降雨量

亩产量

500

700

600

400

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:

20以下

[2030

[3040

[4050

[5060

[6070]

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

1)现随机抽取1名顾客,试估计该顾客年龄在[3050)且未使用自由购的概率;

2)从被抽取的年龄在[5070]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[5060)的概率;

3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?

查看答案和解析>>

同步练习册答案