精英家教网 > 高中数学 > 题目详情
1.双曲线$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{3}$=1的焦点到渐近线的距离为(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{2}$

分析 直接利用双曲线方程的焦点坐标,求解渐近线方程,然后求解即可.

解答 解:双曲线$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{3}$=1的焦点($±\sqrt{7}$,0),渐近线$\sqrt{3}x±2y=0$,
双曲线$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{3}$=1的焦点到渐近线的距离为:$\frac{|±\sqrt{3}×\sqrt{7}|}{\sqrt{3+4}}$=$\sqrt{3}$.
故选:B.

点评 本题考查双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=\frac{{\sqrt{2-x}}}{ln(x+1)}$的定义域为(  )
A.(-1,2)B.[-1,0)∪(0,2)C.(-1,0)∪(0,2]D.(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知Fn(x)=(-1)0Cn0f0(x)+(-1)1Cn1fi(x)+…+(-1)nCnnfn(x),(n∈N*)(x>0),其中,fi(x)(i∈{0,1,2,…,n})是关于x的函数.
(1)若fi(x)=xi(i∈N),求关于F2(1),F2017(2)的值;
(2)若fi(x)=$\frac{x}{x+i}$(i∈N),求证:Fn(x)=$\frac{n!}{(x+1)(x+2)…(x+n)}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,边长为3的正方形中有一张封闭的曲线围成的笑脸.在正方形内随机撒一粒豆子,它落在笑脸区域的概率为$\frac{2}{3}$,则笑脸区域的面积为(  )
A.4B.$\frac{2}{3}$C.6D.无法计算

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知关于x的不等式x2-ax-b<0的解集是(2,3),则a+b的值是(  )
A.-11B.11C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△ABC中,内角A,B,C的对边分别是a,b,c,且a=1,b=$\sqrt{3}$,则“A=30°“是“B=60°”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex+e-x,其中e是自然对数的底数.
(1)证明:f(x)是R上的偶函数;
(2)判断f(x)在(0,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.给出定义:若m-$\frac{1}{2}$<x≤m+$\frac{1}{2}$(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=x-{x}的三个判断:
①y=f(x)的定义域是R,值域是(-$\frac{1}{2}$,$\frac{1}{2}$];  
②点(k,0)是y=f(x)的图象的对称中心,其中k∈Z;
③函数y=f(x)在($\frac{1}{2}$,$\frac{3}{2}$]上是增函数.
则上述判断中所有正确的序号是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在圆内接四边形ABCD中,AB=2,AD=1,$\sqrt{3}$BC=$\sqrt{3}$BDcosα+CDsinβ
(Ⅰ)求角β的大小
(Ⅱ)求四边形ABCD周长的取值范围.

查看答案和解析>>

同步练习册答案