精英家教网 > 高中数学 > 题目详情
已知椭圆C:的右焦点为F,右准线l与x轴交于点B,点A在l上,若△ABO(O为坐标原点)的重心G恰好在椭圆上,则||=   
【答案】分析:先设A(2,y),则焦点F(1,0),根据三角形重心坐标公式得出重心G的坐标,因为重心G恰好在椭圆上,将其坐标代入椭圆方程求得A(2,±1),从而求得结果.
解答:解:设A(2,y),则焦点F(1,0),
重心G()=(),
因为重心G恰好在椭圆上,
所以,y=±1,
即A(2,±1),所以||=
故答案为:
点评:本题考查椭圆的有关性质,涉及三角形重心的有关知识,有一定的难度,注意加强训练.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C:数学公式的右焦点为F(1,0),左、右顶点分别A、B,其中B点的坐标为(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过F的直线交C于M、N,记△AMB、△ANB的面积分别为S1、S2,求数学公式的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省济南市世纪英华实验学校高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知椭圆C:的右焦点为F,离心率,椭圆C上的点到F的距离的最大值为,直线l过点F与椭圆C交于不同的两点A、B.
(1)求椭圆C的方程;
(2)若,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省德州市跃华学校高三(上)12月月考数学试卷(解析版) 题型:解答题

已知椭圆C:的右焦点为F,离心率,椭圆C上的点到F的距离的最大值为,直线l过点F与椭圆C交于不同的两点A、B.
(1)求椭圆C的方程;
(2)若,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2012年吉林省高考数学仿真模拟试卷10(理科)(解析版) 题型:解答题

已知椭圆C:的右焦点为F,离心率,椭圆C上的点到F的距离的最大值为,直线l过点F与椭圆C交于不同的两点A、B.
(1)求椭圆C的方程;
(2)若,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2011年湖北省黄冈市浠水县市级示范高中高三调研数学试卷(一)(解析版) 题型:解答题

已知椭圆C:的右焦点为F,离心率,椭圆C上的点到F的距离的最大值为,直线l过点F与椭圆C交于不同的两点A、B.
(1)求椭圆C的方程;
(2)若,求直线l的方程.

查看答案和解析>>

同步练习册答案