精英家教网 > 高中数学 > 题目详情

【题目】如图 是圆柱的上、下底面圆的直径, 是边长为2的正方形, 是底面圆周上不同于两点的一点, .

(1)求证: 平面

(2)求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】试题分析:

(1)由题意结合几何关系可证得 ,结合线面垂直的判定定理即可证得题中的结论;

(2)建立空间直角坐标系,结合平面的法向量可得二面角的余弦值是

试题解析:

(1)由圆柱性质知: 平面

平面,∴

是底面圆的直径, 是底面圆周上不同于两点的一点,∴

平面

平面.

(2)解法1:过,垂足为,由圆柱性质知平面平面

平面,又过,垂足为,连接

即为所求的二面角的平面角的补角,

易得

由(1)知,∴

,∴

∴所求的二面角的余弦值为.

解法2:过在平面,建立如图所示的空间直角坐标系,

,∴,∴

平面的法向量为,设平面的法向量为

,即,取

∴所求的二面角的余弦值为.

解法3:如图,以为原点, 分别为轴, 轴,圆柱过点的母线为轴建立空间直角坐标系,则

是平面的一个法向量,

,即,令,则

是平面的一个法向量,

,即,令,则 .

∴所求的二面角的余弦值为.

解法4:由(1)知可建立如图所示的空间直角坐标系:

,∴,∴

设平面的法向量为,平面的法向量为

,取

.

∴所求的二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求的最大值与最小值;

(Ⅱ)讨论方程的实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值,并用an1表示an
(2)求数列{an}的通项公式;
(3)设Tn= + + +…+ ,求证:Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,设右焦点为,过原点的直线与椭圆交于两点,线段的中点为,线段的中点为,且.

(1)求弦的长;

(2)当直线的斜率,且直线时, 交椭圆于,若点在第一象限,求证:直线轴围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数是同一函数的是(
A.
B. 与g(x)=2x﹣1
C.f(x)=x0与g(x)=1
D.f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校学生社团为了解“大数据时代”下大学生就业情况的满意度,对20名学生进行问卷计分调查(满分100分),得到如图所示的茎叶图:

(1)计算男生打分的平均分,观察茎叶图,评价男女生打分的分散程度;

(2)从打分在80分以上的同学随机抽3人,求被抽到的女生人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线处的切线方程;

(2)讨论的单调性;

(3)设过两点的直线的斜率为,其中为曲线上的任意两点,并且,若恒成立,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将52志愿者分成A,B两参加义务植树活动A种植150白杨树苗B种植200沙棘树苗.假定A,B两组同时开始种植.

(1)根据历年统计,每名志愿者种植一捆白杨树苗用时小时,种植一捆沙棘树苗用时小时.应如何分配A,B两组的人数使植树活动持续时间最短

(2)在按(1)分配的人数种植1小时发现,每名志愿者种植一捆白杨树苗用时仍为小时,而名志愿者种植一捆沙棘树苗实际用时小时于是A组抽调6志愿者加入B组继续种植,求植树活动所持续的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在某商业区周边有 两条公路,在点处交汇,该商业区为圆心角,半径3的扇形,现规划在该商业区外修建一条公路,与分别交于,要求与扇形弧相切,切点不在上.

(1)设试用表示新建公路的长度,求出满足的关系式,并写出的范围;

(2)设,试用表示新建公路的长度,并且确定的位置,使得新建公路的长度最短.

查看答案和解析>>

同步练习册答案