精英家教网 > 高中数学 > 题目详情

已知向量

(Ⅰ)若,求的值;

(Ⅱ)在中,角的对边分别是,且满足,求函数的取值范围.

 

【答案】

(1);(2).

【解析】

试题分析:本题主要考查两角和与差的正弦公式、二倍角公式、余弦定理、三角函数的值域等基础知识,考查运用三角公式进行三角变换的能力和基本的运算能力.第一问,利用向量的数量积将坐标代入得表达式,利用倍角公式、两角和的正弦公式化简表达式,因为,所以得到,而所求中的角的2倍,利用二倍角公式计算;第二问,利用余弦定理将已知转化,得到,得到,得到角的范围,代入到中求值域.

试题解析:(Ⅰ)∵

,∴,∴

(Ⅱ)∵,∴,即,∴

又∵,∴,又∵,∴,∴.

考点:1.向量的数量积;2.倍角公式;3.两角和与差的正弦公式;4.余弦公式;5.三角函数的值域.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(
3
2
,-
3
2
),
b
=(
1
2
3
2
),且存在实数x和y,使向量
m
=
a
+(x2-3)•
b
n
=-y
a
+x
b
,且
m
n

(Ⅰ)求函数y=f(x)的关系式,并求其单调区间和极值;
(Ⅱ)是否存在正数M,使得对任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤M成立?若存在求出M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)已知向量
a
=(-1,1)
b
=(3,m)
a
∥(
a
+
b
)
,则m=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量a=(
3
,1),b=(0,1),c=(k,
3
)
,若
a
+2
b
c
垂直,则k=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
=(sinx,2
3
cosx
),
=(2sinx,sinx),设f(x)=
 • 
-1

(1)求f(x)的最小正周期及单调递增区间;
(2)若x∈[ 0 ,  
π
2
 ]
,求f(x)的值域;
(3)若f(x)的图象按
=(t,0)作长度最短的平移后,其图象关于原点对称,求
的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinβ,1),
b
=(2,-1)且
a
b
,则sinβ等于
1
2
1
2

查看答案和解析>>

同步练习册答案