A. | $\sqrt{3}$ | B. | $\frac{16}{13}$ | C. | $\frac{32}{13}$ | D. | $\frac{30}{13}$ |
分析 联立$\left\{\begin{array}{l}{x-\sqrt{3}y+3=0}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得13y2-18$\sqrt{3}y$+15=0,利用弦长公式出|AB|,直线l:x-$\sqrt{3}$y+3=0的倾斜角为30°,从而|CD|=$\frac{|AB|}{cos30°}$,由此能求出结果.
解答 解:联立$\left\{\begin{array}{l}{x-\sqrt{3}y+3=0}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,
得13y2-18$\sqrt{3}y$+15=0,
设A(x1,y1),B(x2,y2),则y1+y2=$\frac{18\sqrt{3}}{13}$,
y1y2=$\frac{15}{13}$,
|AB|=$\sqrt{4[(\frac{18\sqrt{3}}{13})^{2}-4×\frac{15}{13}]}$=$\frac{16\sqrt{3}}{13}$,
∵直线l:x-$\sqrt{3}$y+3=0的倾斜角为30°,
∴|CD|=$\frac{|AB|}{cos30°}$=$\frac{\frac{16\sqrt{3}}{13}}{\frac{\sqrt{3}}{2}}$=$\frac{32}{13}$.
故选:C.
点评 本题考查线段长的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、弦长公式、椭圆性质的合理运用.
科目:高中数学 来源: 题型:选择题
A. | 有最小值-5 | B. | 有最大值-5 | C. | 有最小值-1 | D. | 有最大值-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {1,2} | B. | {1,2,0,-1} | C. | (-1,2] | D. | {1.5,0} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com