分析 (1)根据3-x与t+1成反比例,当年促销费用t=0万元时,年销量是1万件,可求出k的值;进而通过x表示出年利润y,并化简整理,代入整理即可求出y万元表示为促销费t万元的函数;
(2)利用基本不等式求出最值,即可得结论.
解答 解:(1)设反比例系数为k(k≠0),有$3-x=\frac{k}{t+1}$
因为当t=0时x=1,代入得k=2,所以$x=3-\frac{2}{t+1}({t≥0})$;
易得:$y=x•({\frac{3+32x}{x}•1.5+\frac{t}{2x}})-({3+32x})-t$,
化简得:$y=\frac{99}{2}-\frac{32}{t+1}-\frac{t}{2}({t≥0})$;
(2)$y=50-({\frac{32}{t+1}+\frac{t+1}{2}})≤50-2\sqrt{\frac{32}{t+1}•\frac{t+1}{2}}=42$,当且仅当t=7时取等号;
所以,当2017年的促销费投入7万元时,工厂的年利润最大为42万元.
点评 本题主要考查函数模型的选择与应用,考查基本不等式在求最值中的应用,考查学生分析问题和解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
患心肺疾病 | 患心肺疾病 | 合计 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
p(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | -1 | C. | $\frac{\sqrt{2}}{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x-2y+7=0 | B. | 2x+y-1=0 | C. | f(x) | D. | f(5x)>f(3x+4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com