【题目】本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每年每次租时间不超过两小时免费,超过两个小时的部分每小时收费2元(不足1小时的部分按1小时计算).现有甲、乙两人独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为, ;两小时以上且不超过三小时还车的概率为, ;两人租车时间都不会超过四小时.
(1)求甲、乙都在三到四小时内还车的概率和甲、乙两人所付租车费相同的概率;
(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望.
科目:高中数学 来源: 题型:
【题目】某种商品价格与该商品日需求量之间的几组对照数据如下表:
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,当价格元时,日需求量的预测值为多少?
参考公式:线性归回方程: ,其中 ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集U=R,集合A={x|2x+a>0},B={x|x2﹣2x﹣3>0}. (Ⅰ)当a=2时,求集合A∩B;
(Ⅱ)若A∩(UB)=,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(Ⅰ)函数f(x)满足对任意的实数x,y都有f(xy)=f(x)+f(y),且f(4)=2,求f( )的值; (Ⅱ)已知函数f(x)是定义在[﹣1,1]上的奇函数,且f(x)在[﹣1,1]上递增,求不等式f(x+ )+f(x﹣1)<0
的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在平面直角坐标系xOy中,曲线C1的参数方程为(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2: .
(Ⅰ)求曲线C1和C2的直角坐标方程,并分别指出其曲线类型;
(Ⅱ)试判断:曲线C1和C2是否有公共点?如果有,说明公共点的个数;如果没有,请说明理由;
(Ⅲ)设是曲线C1上任意一点,请直接写出a + 2b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,点是圆上的任意一点,,线段的垂直平分线与直线交于点.
(1)求点的轨迹方程;
(2)若直线与点的轨迹相切,且与圆相交于点和,求直线和三角形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)求出圆的直角坐标方程;
(2)已知圆与轴相交于, 两点,直线: 关于点对称的直线为.若直线上存在点使得,求实数的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com