精英家教网 > 高中数学 > 题目详情
“x>l”是“x>0”的( )
A.必要不充分条件
B.充分不必要条件
C.充要条件
D.既不充分也不必要条件
【答案】分析:因为“x >0”可以求出x的范围,再根据充分必要条件的定义进行求解.
解答:解:∵“x >0”可得x>1或-1<x<0,
若x>1可得“x >0“,
∴“x>1”⇒“x >0”,反之不成立.
∴“x>1”是“x >0”的充分非必要条件,
故选B.
点评:此题主要考查分式不等式的解法,以及充分必要条件的定义,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法:
①用“辗转相除法”求得243,135 的最大公约数是9;
②命题p:?x∈R,x2-x+
1
4
<0
,则?p是?x0∈R,x02-x0+
1
4
≥0

③已知条件p:x>1,y>1,条件q:x+y>2,xy>1,则条件p是条件q成立的充分不必要条件;
④若
a
=(1,0,1),
b
=(-1,1,0)
,则
a
b
>=
π
2

⑤已知f(n)=
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
,则f(n)中共有n2-n+1项,当n=2时,f(2)=
1
2
+
1
3
+
1
4

⑥直线l:y=kx+1与双曲线C:x2-y2=1的左支有且仅有一个公共点,则k的取值范围是-1<k<1或k=
2

其中正确的命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网函数y=f(x)是定义在R上的偶函数,且f(-1+x)=f(-1-x),当x∈[-2,-1]时,f(x)=t(x+2)3-t(x+2)(t∈R),记函数y=f(x)的图象在(
1
2
,f(
1
2
))处的切线为l,f′(
1
2
)=1.
(Ⅰ)求y=f(x)在[0,1]上的解析式;
(Ⅱ)点列B1(b1,2),B2(b2,3),…,Bn(bn,n+1)在l上,A1(x1,0),A2(x2,0),…,An(xn,0)依次为x轴上的点,如图,当n∈N*时,点An,Bn,An+1构成以AnAn+1为底边的等腰三角形.若x1=a(0<a<1),求数列{xn}的通项公式;
(Ⅲ)在(Ⅱ)的条件下,是否存在实数a使得数列{xn}是等差数列?如果存在,写出a的一个值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x)=m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个函数.设f (x)=x2+ax,g(x)=x+b(a,b∈R),l(x)=2x2+3x-1,h (x)为f (x)、g(x)在R上生成的一个二次函数.
(Ⅰ)设a=1,b=2,若h (x)为偶函数,求h(
2
)

(Ⅱ)设b>0,若h (x)同时也是g(x)、l(x)在R上生成的一个函数,求a+b的最小值;
(Ⅲ)试判断h(x)能否为任意的一个二次函数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•红桥区二模)“x>l”是“x-
1
x
>0”的(  )

查看答案和解析>>

同步练习册答案