精英家教网 > 高中数学 > 题目详情
18.P是△ABC所在平面上一点,满足$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=2$\overrightarrow{AB}$,若S△ABC=12,则△PAB的面积为(  )
A.4B.6C.8D.16

分析 根据$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=2$\overrightarrow{AB}$,可得3$\overrightarrow{AP}$=$\overrightarrow{BC}$,所以$\overrightarrow{AP}$∥$\overrightarrow{BC}$并且方向一样,由此可求S△PAB

解答 解:∵$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=2$\overrightarrow{AB}$=2($\overrightarrow{AP}$+$\overrightarrow{PB}$)
∴3$\overrightarrow{AP}$=$\overrightarrow{BC}$
∴$\overrightarrow{AP}$∥$\overrightarrow{BC}$并且方向一样
设AP与BC的距离为h,则
∵S△PAB=$\frac{1}{2}$|$\overrightarrow{AP}$|h,S△ABC=$\frac{1}{2}$|$\overrightarrow{BC}$|h
∵|$\overrightarrow{BC}$|=3|$\overrightarrow{AP}$|,S△ABC=12
∴S△PAB=$\frac{1}{3}$S△ABC=4
故选A.

点评 本题考查向量知识的运用,考查三角形面积的计算,解题的关键是确定$\overrightarrow{AP}$∥$\overrightarrow{BC}$并且方向一样.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.将长度为a的木条折成三段,求三段能构成三角形的概率$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,如图茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.
(1)从这16人中随机选取3人,记X表示抽到“极幸福”的人数,求X的分布列及数学期望,并求出至多有1人是“极幸福”的概率;
(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按〔0,10〕,(10,20〕,(20,30〕,(30,40〕,(40,50〕分组,得到频率分布直方图如下:

假设甲、乙两种酸奶独立销售且日销售量相互独立.
(Ⅰ)写出频率分布直方图(甲)中a的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为s12,s22,试比s12,s22的大小;(只需写出结论)
(Ⅱ)若X表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某购物网站为了解顾客对某商品的满意度,随机调查50名顾客对该商品的评价,具体数据如下
 评分 1 2 3 4 5
 人数 x 20 10 5 y
已知这50位顾客中评分小于4分的顾客占80%.
(Ⅰ)求x与y的值;
(Ⅱ)若将频率视为概率,现从对该商品作出了评价的顾客中,随机抽取一位,记该顾客的评分为X,求随机变量X的分布列一与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某算法的程序框图如图所示,则输出量y与输入量x满足的关系式是y=$\left\{\begin{array}{l}x-1,x≤1\\ lnx,x>1\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不等式组$\left\{\begin{array}{l}{{x}^{2}-x-2>0①}\\{2{x}^{2}+(5+2a)x+5a<0②}\end{array}\right.$解集中的整数有且只有-2,则a的范围(  )
A.[-2,2]B.[-2,2)C.[-3,2]D.[-3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合M={-1,0,1},N={0,1,2}.若x∈M且x∉N,则x等于(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设二次函数f(x)=ax2-4x+c(x∈R)的值域为[0,+∞),则$\frac{1}{c}$+$\frac{9}{a}$的最小值为3;若ax2-4x+c>0的解集为 (-1,2),则a-c=12.

查看答案和解析>>

同步练习册答案