精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=3x2﹣kx﹣8,x∈[1,5].
(1)当k=12时,求f(x)的值域;
(2)若函数f(x)具有单调性,求实数k的取值范围.

【答案】
(1)解:当K=12时,f(x)=3(x﹣2)2﹣20,x∈[1,5],

f(x)在[1,2]是减函数,在[2,5]上是增函数,

∴f(x)min=f(2)=﹣20,又f(1)<f(5),且f(5)=7,

∴f(x)在[1,5]的值域为:[﹣20,7]


(2)解:由已知,f(x)=3 ﹣8,x∈[1,5],

若使f(x)在区间[1,5]上具有单调性,

当且仅当 ,或者

解得k≤6或者k≥30,

∴实数k的求值范围为(﹣∞,6]∪[30,+∞)


【解析】(1)只要将k=12代入解析式,然后配方,明确区间[1,5]被对称轴分为两个单调区间后的单调性,然后求最值;(2)若使f(x)在区间[1,5]上具有单调性,只要将原函数配方,使区间[1,5]在对称轴的一侧即可,得到关于k的不等式解之.
【考点精析】根据题目的已知条件,利用二次函数的性质的相关知识可以得到问题的答案,需要掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一条宽为的两平行河岸有村庄和供电站,村庄的直线距离都是与河岸垂直,垂足为现要修建电缆,从供电站向村庄供电.修建地下电缆、水下电缆的费用分别是万元万元.

(1) 如图①,已知村庄原来铺设有电缆,现先从处修建最短水下电缆到达对岸后后,再修建地下电缆接入原电缆供电,试求该方案总施工费用的最小值;

(2) 如图②,点在线段上,且铺设电缆的线路为.若,试用表示出总施工费用(万元)的解析式,并求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知函数.

(1)求证:

(2)若恒成立,求的最大值与的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的三个内角A,B,C对应的边分别a,b,c,且acosC,bcosB,ccosA成等差数列,则角B等于(
A.30°
B.60°
C.90°
D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:xA,且A={x|a﹣1xa+1},命题q:xB,且B={x|x2﹣4x+3≥0}

(Ⅰ)若A∩B=A∪B=R,求实数a的值;

(Ⅱ)若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式为
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(0,+∞)上的函数f(x)满足下面三个条件:
①对任意正数a,b,都有f(a)+f(b)=f(ab);
②当x>1时,f(x)<0;
③f(2)=﹣1
(I)求f(1)和 的值;
(II)试用单调性定义证明:函数f(x)在(0,+∞)上是减函数;
(III)求满足f(log4x)>2的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)为定义在R上的奇函数,且在(0,+∞)内是增函数,又f(2)=0,则不等式x5f(x)>0的解集为(
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆M过坐标原点O且圆心在曲线 上.
(1)若圆M分别与x轴、y轴交于点A、B(不同于原点O),求证:△AOB的面积为定值;
(2)设直线 与圆M 交于不同的两点C,D,且|OC|=|OD|,求圆M的方程;
(3)设直线 与(Ⅱ)中所求圆M交于点E、F,P为直线x=5上的动点,直线PE,PF与圆M的另一个交点分别为G,H,求证:直线GH过定点.

查看答案和解析>>

同步练习册答案