·ÖÎö £¨1£©Éè³öPµã×ø±ê£¬Çó³öOP¡¢OQ¡¢PQµÄбÂÊ£¬´úÈë$\frac{1}{{{k_{OP}}}}+\frac{1}{{{k_{OQ}}}}=\frac{1}{{{k_{PQ}}}}$£¬ÕûÀí¿ÉµÃµãPµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©¹ýF×÷Çãб½ÇΪ60¡ãµÄÖ±ÏßL£¬ÓëÇúÏßCÁªÁ¢£¬ÀûÓÃΤ´ï¶¨Àí£¬¼´¿ÉÇó¡÷AOBµÄÃæ»ý£»
£¨3£©ÉèÖ±Ïßl1µÄ·½³ÌΪy=k£¨x-1£©£¨k¡Ù0£©£¬ÓëÅ×ÎïÏß·½³ÌÁªÁ¢£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØϵÇóµÃEµÄ×ø±ê£¬Í¬ÀíÇó³öFµÄ×ø±ê£¬½øÒ»²½Çó³öEFËùÔÚÖ±Ïß·½³Ì£¬ÓÉÏßϵ·½³ÌÖ¤Ã÷Ö±ÏßEFºã¹ýÒ»¶¨µã£®
½â´ð ½â£º£¨1£©ÉèµãPµÄ×ø±êΪP£¨x£¬y£©£¬Ôò¡£¨2·Ö£©
ÓÉ$\frac{1}{{{k_{OP}}}}+\frac{1}{{{k_{OQ}}}}=\frac{1}{{{k_{PQ}}}}$£¬µÃ$\frac{x}{y}+\frac{1}{2}=\frac{x-1}{y-2}$£®
ÕûÀíµÃµãPµÄ¹ì¼£µÄ·½³ÌΪ£ºy2=4x£¨y¡Ù0£¬y¡Ù2£©£» ¡£¨4·Ö£©
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉ$\left\{\begin{array}{l}{y^2}=4x\\ y=\sqrt{3}£¨x-1£©\end{array}\right.$
µÃ£º${y^2}-\frac{4}{3}\sqrt{3}y-4=0$£¬
¡à${y_1}+{y_2}=\frac{4}{3}\sqrt{3}\;\;£¬\;\;{y_1}{y_2}=-4$¡£¨6·Ö£©
¡à${S_¡÷}=\frac{1}{2}¡Á|OF|¡Á|{y_2}-{y_1}|$=$\frac{1}{2}¡Á1¡Á\sqrt{{{£¨{y_1}+{y_2}£©}^2}-4{y_1}{y_2}}$=$\frac{1}{2}•\sqrt{\frac{16}{3}+16}$=$\frac{4}{3}\sqrt{3}$¡£¨8·Ö£©
£¨3£©Ö¤Ã÷£ºÉèµãA£¬BµÄ×ø±êΪA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòµãEµÄ×ø±êΪ£¨$\frac{{x}_{1}+{x}_{2}}{2}$£¬$\frac{{y}_{1}+{y}_{2}}{2}$£©£®
ÓÉÌâÒâ¿ÉÉèÖ±Ïßl1µÄ·½³ÌΪy=k£¨x-1£©£¨k¡Ù0£©£¬
ÁªÁ¢Å×ÎïÏß·½³Ì£¬ÏûÈ¥yµÃk2x2-£¨2k2+4£©x+k2=0£¬¡÷=£¨2k2+4£©2-4k4=16k2+16£¾0£® ¡£¨9·Ö£©
¡ßÖ±Ïßl1ÓëÅ×ÎïÏß½»ÓÚA£¬BÁ½µã£¬¡àx1+x2=2+$\frac{4}{{k}^{2}}$£¬y1+y1=$\frac{4}{k}$£¬¡£¨10·Ö£©
¡àµãEµÄ×ø±êΪ£¨1+$\frac{2}{{k}^{2}}$£¬$\frac{2}{k}$£©£®
ÓÉÌâÖª£¬Ö±Ïßl2µÄбÂÊΪ-$\frac{1}{k}$£¬
ͬÀí¿ÉµÃFµÄ×ø±êΪ£¨1+2k2£¬-2k£©£®¡£¨11·Ö£©
µ±k¡Ù¡À1ʱ£¬ÓÐ1+$\frac{2}{{k}^{2}}$¡Ù1+2k2£®´ËʱֱÏßEFµÄбÂÊΪ£ºkEF=$\frac{k}{1-{k}^{2}}$£¬
¡àÖ±ÏßEFµÄ·½³ÌΪy+2k=$\frac{k}{1-{k}^{2}}$£¨x-1-2k2£©£¬ÕûÀíµÃy=$\frac{k}{1-{k}^{2}}$£¨x-3£©£®ºã¹ý¶¨µã£¨3£¬0£©¡£¨13·Ö£©
µ±k=¡À1ʱ£¬Ö±ÏßEFµÄ·½³ÌΪx=3£¬Ò²¹ýµã£¨3£¬0£©£®
×ÛÉÏËùÊö£¬Ö±ÏßEFºã¹ý¶¨µã£¨3£¬0£©£®¡£¨14·Ö£©
µãÆÀ ±¾Ì⿼²é¹ì¼£·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏßÓëÅ×ÎïÏßλÖùØϵµÄÓ¦Óã¬ÌåÏÖÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ïë·½·¨£¬ÊÇÖеµÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 7¸ö | B£® | 3¸ö | C£® | 5¸ö | D£® | 6¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 0Ìõ | B£® | 1Ìõ | C£® | 2Ìõ | D£® | ÎÞÊýÌõ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com