4£®ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬OΪ×ø±êÔ­µã£¬ÒÑÖªµãQ£¨1£¬2£©£¬PÊǶ¯µã£¬ÇÒÈý½ÇÐÎPOQµÄÈý±ßËùÔÚÖ±ÏßµÄбÂÊÂú×ã$\frac{1}{{{k_{OP}}}}+\frac{1}{{{k_{OQ}}}}=\frac{1}{{{k_{PQ}}}}$£®
£¨1£©ÇóµãPµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©¹ýF×÷Çãб½ÇΪ60¡ãµÄÖ±ÏßL£¬½»ÇúÏßCÓÚA£¬BÁ½µã£¬Çó¡÷AOBµÄÃæ»ý£»
£¨3£©¹ýµãD£¨1£¬0£©ÈÎ×÷Á½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïßl1£¬l2£¬·Ö±ð½»¹ì¼£CÓÚµãA£¬BºÍM£¬N£¬ÉèÏ߶ÎAB£¬MNµÄÖеã·Ö±ðΪE£¬F£®ÇóÖ¤£ºÖ±ÏßEFºã¹ýÒ»¶¨µã£®

·ÖÎö £¨1£©Éè³öPµã×ø±ê£¬Çó³öOP¡¢OQ¡¢PQµÄбÂÊ£¬´úÈë$\frac{1}{{{k_{OP}}}}+\frac{1}{{{k_{OQ}}}}=\frac{1}{{{k_{PQ}}}}$£¬ÕûÀí¿ÉµÃµãPµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©¹ýF×÷Çãб½ÇΪ60¡ãµÄÖ±ÏßL£¬ÓëÇúÏßCÁªÁ¢£¬ÀûÓÃΤ´ï¶¨Àí£¬¼´¿ÉÇó¡÷AOBµÄÃæ»ý£»
£¨3£©ÉèÖ±Ïßl1µÄ·½³ÌΪy=k£¨x-1£©£¨k¡Ù0£©£¬ÓëÅ×ÎïÏß·½³ÌÁªÁ¢£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØϵÇóµÃEµÄ×ø±ê£¬Í¬ÀíÇó³öFµÄ×ø±ê£¬½øÒ»²½Çó³öEFËùÔÚÖ±Ïß·½³Ì£¬ÓÉÏßϵ·½³ÌÖ¤Ã÷Ö±ÏßEFºã¹ýÒ»¶¨µã£®

½â´ð ½â£º£¨1£©ÉèµãPµÄ×ø±êΪP£¨x£¬y£©£¬Ôò¡­£¨2·Ö£©
ÓÉ$\frac{1}{{{k_{OP}}}}+\frac{1}{{{k_{OQ}}}}=\frac{1}{{{k_{PQ}}}}$£¬µÃ$\frac{x}{y}+\frac{1}{2}=\frac{x-1}{y-2}$£®
ÕûÀíµÃµãPµÄ¹ì¼£µÄ·½³ÌΪ£ºy2=4x£¨y¡Ù0£¬y¡Ù2£©£»   ¡­£¨4·Ö£©
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉ$\left\{\begin{array}{l}{y^2}=4x\\ y=\sqrt{3}£¨x-1£©\end{array}\right.$
µÃ£º${y^2}-\frac{4}{3}\sqrt{3}y-4=0$£¬
¡à${y_1}+{y_2}=\frac{4}{3}\sqrt{3}\;\;£¬\;\;{y_1}{y_2}=-4$¡­£¨6·Ö£©
¡à${S_¡÷}=\frac{1}{2}¡Á|OF|¡Á|{y_2}-{y_1}|$=$\frac{1}{2}¡Á1¡Á\sqrt{{{£¨{y_1}+{y_2}£©}^2}-4{y_1}{y_2}}$=$\frac{1}{2}•\sqrt{\frac{16}{3}+16}$=$\frac{4}{3}\sqrt{3}$¡­£¨8·Ö£©
£¨3£©Ö¤Ã÷£ºÉèµãA£¬BµÄ×ø±êΪA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòµãEµÄ×ø±êΪ£¨$\frac{{x}_{1}+{x}_{2}}{2}$£¬$\frac{{y}_{1}+{y}_{2}}{2}$£©£®
ÓÉÌâÒâ¿ÉÉèÖ±Ïßl1µÄ·½³ÌΪy=k£¨x-1£©£¨k¡Ù0£©£¬
ÁªÁ¢Å×ÎïÏß·½³Ì£¬ÏûÈ¥yµÃk2x2-£¨2k2+4£©x+k2=0£¬¡÷=£¨2k2+4£©2-4k4=16k2+16£¾0£®      ¡­£¨9·Ö£©
¡ßÖ±Ïßl1ÓëÅ×ÎïÏß½»ÓÚA£¬BÁ½µã£¬¡àx1+x2=2+$\frac{4}{{k}^{2}}$£¬y1+y1=$\frac{4}{k}$£¬¡­£¨10·Ö£©
¡àµãEµÄ×ø±êΪ£¨1+$\frac{2}{{k}^{2}}$£¬$\frac{2}{k}$£©£®
ÓÉÌâÖª£¬Ö±Ïßl2µÄбÂÊΪ-$\frac{1}{k}$£¬
ͬÀí¿ÉµÃFµÄ×ø±êΪ£¨1+2k2£¬-2k£©£®¡­£¨11·Ö£©
µ±k¡Ù¡À1ʱ£¬ÓÐ1+$\frac{2}{{k}^{2}}$¡Ù1+2k2£®´ËʱֱÏßEFµÄбÂÊΪ£ºkEF=$\frac{k}{1-{k}^{2}}$£¬
¡àÖ±ÏßEFµÄ·½³ÌΪy+2k=$\frac{k}{1-{k}^{2}}$£¨x-1-2k2£©£¬ÕûÀíµÃy=$\frac{k}{1-{k}^{2}}$£¨x-3£©£®ºã¹ý¶¨µã£¨3£¬0£©¡­£¨13·Ö£©
µ±k=¡À1ʱ£¬Ö±ÏßEFµÄ·½³ÌΪx=3£¬Ò²¹ýµã£¨3£¬0£©£®
×ÛÉÏËùÊö£¬Ö±ÏßEFºã¹ý¶¨µã£¨3£¬0£©£®¡­£¨14·Ö£©

µãÆÀ ±¾Ì⿼²é¹ì¼£·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏßÓëÅ×ÎïÏßλÖùØϵµÄÓ¦Óã¬ÌåÏÖÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ïë·½·¨£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ1£¬ÔÚÈýÀâ׶P-ABCÖУ¬PA¡ÍƽÃæABC£¬AC¡ÍBC£¬DΪ²àÀâPCÉÏÒ»µã£¬ËüµÄÕý£¨Ö÷£©ÊÓͼºÍ²à£¨×ó£©ÊÓͼÈçͼ2Ëùʾ£®
£¨1£©Ö¤Ã÷£ºAD¡ÍBC£»
£¨2£©ÇóÈýÀâ׶D-ABCµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÔÚƽÐÐÁùÃæÌåABCD-A1B1C1ÖУ¬Ä£ÓëÏòÁ¿$\overrightarrow{{A_1}{B_1}}$µÄÄ£ÏàµÈµÄÏòÁ¿ÓУ¨¡¡¡¡£©
A£®7¸öB£®3¸öC£®5¸öD£®6¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªµãM¡¢N·Ö±ðÊÇÕý·½ÌåABCD-A1B1C1D1µÄÀâAB¡¢BB1µÄÖе㣬µãE¡¢F·Ö±ðÊÇÏ߶ÎD1MÓëC1NÉϵĵ㣬ÔòÂú×ãÓëÖ±ÏßC1D1ƽÐеÄÖ±ÏßEFÓУ¨¡¡¡¡£©
A£®0ÌõB£®1ÌõC£®2ÌõD£®ÎÞÊýÌõ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Ò»Öʵã×öÖ±ÏßÔ˶¯£¬ÔÚx£¨µ¥Î»£ºs£©Ê±Àë³ö·¢µãµÄ¾àÀ루µ¥Î»£ºm£©Îªf£¨x£©=$\frac{2}{3}$x3+x2+2x£®
£¨1£©ÇóÖʵãÔÚµÚ1sÄÚµÄƽ¾ùËٶȣ»
£¨2£©ÇóÖʵãÔÚµÚ1sÄ©µÄ˲ʱËٶȣ»
£¨3£©¾­¹ý¶à³¤Ê±¼äÖʵãµÄÔ˶¯Ëٶȴﵽ14m/s£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÉèʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}x+y-7¡Ü0\\ x-3y+1¡Ü0\\ 3x-y-5¡Ý0\end{array}\right.$£¬Ôòz=2x-yµÄ×îСֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{£¨\frac{1}{2}£©^{x}-1£¬x£¼0}\\{-{x}^{2}+x£¬x¡Ý0}\end{array}\right.$£¬Ôòf£¨f£¨2£©£©=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÔÚËÄÀâ׶P-ABCDÖУ¬µ×ÃæABCDÊǾØÐΣ¬PA¡ÍƽÃæABCD£¬AP=AB=2£¬BC=2$\sqrt{2}$£¬E£¬F·Ö±ðÊÇAD£¬PCµÄÖе㣮
£¨1£©Ö¤Ã÷£ºPC¡ÍƽÃæBEF£»
£¨2£©ÇóƽÃæBEFÓëƽÃæBAPËù³ÉµÄÈñ¶þÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÖ±Ïßl¾­¹ýÖ±Ïß2x+y+5=0Óëx-2y=0µÄ½»µã£¬Ô²C1£ºx2+y2-2x-2y-4=0ÓëÔ²C2£ºx2+y2+6x+2y-6=0Ïà½ÏÓÚA¡¢BÁ½µã£®
£¨1£©ÈôµãP£¨5£¬0£©µ½Ö±ÏßlµÄ¾àÀëΪ4£¬ÇólµÄÖ±Ïß·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÖ±ÏßAB´¹Ö±£¬ÇóÖ±Ïßl·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸