精英家教网 > 高中数学 > 题目详情
17.设函数f(x)=logax,若不等式|f(x)|>1对任意x∈[2,+∞)恒成立,则实数a的取值范围是(  )
A.(0,$\frac{1}{2}$)∪(1,2)B.(0,$\frac{1}{2}$)∪(2,+∞)C.($\frac{1}{2}$,1)∪(1,2)D.($\frac{1}{2}$,1)∪(2,+∞)

分析 根据x的取值范围,对a进行分类讨论,根据函数的单调性,求出|f(x)|的最小值,进而求出a的范围.

解答 解:|f(x)|>1对任意x∈[2,+∞)恒成立,
当a>1时,|f(x)|=f(x)≥f(2)=loga2,
∴loga2>1,
∴1<a<2;
当0<a<1时,|f(x)|=-f(x)≥-f(2)=-loga2,
∴-loga2>1,
∴$\frac{1}{2}$<a<1;
故选:C.

点评 考查了绝对值函数和对数函数性质,属于基础题型,应熟练掌握解题方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在复平面内复数$z=\frac{ai+1}{1-i}$对应的点在第一象限,则实数a的取值可以为(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知奇函数f(x)在(0,+∞)上单调递减,且f(2)=0,则不等式x•f(x)<0的取值范围是{x|x>2,或x<-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知log${\;}_{\frac{1}{2}}$a<log${\;}_{\frac{1}{2}}$b,则下列不等式一定成立的是(  )
A.$\frac{1}{a}>\frac{1}{b}$B.${({\frac{1}{3}})^a}>{({\frac{1}{3}})^b}$C.ln(a-b)>0D.3a-b>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=loga(2-ax2)在(0,1)上为减函数,则实数a的取值范围(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若α是第三象限角,化简$\sqrt{\frac{1+cosα}{1-cosα}}$$+\sqrt{\frac{1-cosα}{1+cosα}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.用描述法表示下列集合:
(1)平面直角坐标系中第二象限内所有点的集合;
(2)被3除余2的全体自然数构成的集合;
(3)全体奇数的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.f(x)=$\left\{\begin{array}{l}{{x}^{3}+5,0≤x≤3}\\{x+1,3<x≤6}\end{array}\right.$,求f(1)+f(4)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=log(2a-1)(2x+1)在区间(0,+∞)上满足f(x)>0,则a的取值范围是(1,+∞).

查看答案和解析>>

同步练习册答案