【题目】已知曲线 (t为参数),以原点为极点,以x正半轴为极轴,建立极坐标系,曲线 .
(Ⅰ)写出曲线C1的普通方程,曲线C2的直角坐标方程;
(Ⅱ)若M(1,0),且曲线C1与曲线C2交于两个不同的点A,B,求 的值.
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与抛物线C的交点为Q,且|QF|=2|PQ|,过F的直线l与抛物线C相交于A,B两点.
(1)求C的方程;
(2)设AB的垂直平分线l'与C相交于M,N两点,试判断A,M,B,N四点是否在同一个圆上?若在,求出l的方程;若不在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ2﹣4ρsinθ+2=0.
(Ⅰ)把圆C的极坐标方程化为直角坐标方程;
(Ⅱ)将直线l向右平移h个单位,所得直线l′与圆C相切,求h.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,△PAB是等边三角形,AC⊥BC,且AC=BC=2,O、D分别是AB,PB的中点.
(1)求证:PA∥平面COD;
(2)求三棱锥P﹣ABC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,设边a,b,c所对的角分别为A,B,C,且a>c.已知△ABC的面积为 , ,b=3.
(Ⅰ)求a,c的值;
(Ⅱ)求sin(B﹣C)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x+a)ln(x+a),g(x)=﹣ +ax.
(1)函数h(x)=f(ex﹣a)+g'(ex),x∈[﹣1,1],求函数h(x)的最小值;
(2)对任意x∈[2,+∞),都有f(x﹣a﹣1)﹣g(x)≤0成立,求a的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)满足xf′(x)+f(x)= ,f(e)= ,则函数f(x)( )
A.在(0,e)上单调递增,在(e,+∞)上单调递减
B.在(0,+∞)上单调递增
C.在(0,e)上单调递减,在(e,+∞)上单调递增
D.在(0,+∞)上单调递减
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形,E是BC的中点.
(1)求证:AE∥平面PCD;
(2)记平面PAB与平面PCD的交线为l,求二面角C﹣l﹣B的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com