精英家教网 > 高中数学 > 题目详情
8、已知函数f(x)是定义在R上的奇函数,且对任意x∈R有f(x)=f(2-x)成立,则f(2010)的值为
0
分析:由函数f(x)是定义在R上的奇函数,且对任意x∈R有f(x)=f(2-x)成立,我们不难得到函数f(x)是一个周期函数,而且我们可以求出它的最小正周期T,根据周期函数的性质,我们易求出f(2010)的值.
解答:解:∵对任意x∈R有f(x)=f(2-x)成立
∴函数f(x)的图象关于直线x=1对称
又∵函数f(x)是定义在R上的奇函数
∴函数f(x)是一个周期函数
且T=4
故f(2010)=f(0)
又∵定义在R上的奇函数其图象必过原点
∴f(2010)=0
故答案为:0
点评:点评:利用函数的周期性解题要注意:对于任意实数x,①若f(x+T)=f(x),则T为函数的周期;②若f(x+T)=-f(x),则2T为函数的周期;③若(a,y),(b,y)分别为函数的两个对称中心则T=2|(a-b)|④对于任意$x∈R,f(x+1)=\frac{1-f(x)}{1+f(x)}$,则T=2⑤若(a,y)为函数的对称中心,x=b为函数的对称轴,则T=4|(a-b)|
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,且x1+x2=1.
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的条件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn为数列{an}的前n项和.求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

同步练习册答案