精英家教网 > 高中数学 > 题目详情

【题目】如图半圆的直径为4,为直径延长线上一点,且为半圆周上任一点,以为边作等边按顺时针方向排列)

(1)若等边边长为,试写出关于的函数关系;

(2)问为多少时,四边形的面积最大?这个最大面积为多少?

【答案】1;(2时,四边形OACB的面积最大,其最大面积为

【解析】

1根据余弦定理可求得

2)先表示出△ABC的面积及△OAB的面积,进而表示出四边形OACB的面积,并化简函数的解析式为正弦型函数的形式,再结合正弦型函数最值的求法进行求解.

1)由余弦定理得

2)四边形OACB的面积=△OAB的面积+ABC的面积

则△ABC的面积

OAB的面积

四边形OACB的面积

时,四边形OACB的面积最大,其最大面积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某医药公司生产五中抗癌类药物,根据销售统计资料,该公司的五种药品 的市场需求量(单位:件)的频率分布直方图如图所示.

(1)求的值;

(2)若将产品的市场需求量的频率视为概率,现从两种产品中利用分层抽样的方法随机抽取5件,然后从这5件产品中任取3件,求“至少有2件取自产品”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是奇函数的导函数,,当时,,则使得成立的的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其最小正周期为.

1)求的表达式;

2)将函数的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象,若关于的方程在区间上有且只有一个实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

温差x/℃

10

11

13

12

8

发芽数y/颗

23

25

30

26

16

(1)从这5天中任选2天,记发芽的种子数分别为,求事件“均不小于25”的概率;

(2) 若由线性回归方程得到的估计数据与4月份所选5天的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的. 请根据4月74月15日与4月21日这三天的数据,求出关于的线性回归方程,并判定所得的线性回归方程是否可靠?

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面 分别为的中点,点在线段上.

(Ⅰ)求证:平面

(Ⅱ)如果直线与平面所成的角和直线与平面所成的角相等,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下表格记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以表示.

甲组

9

9

11

11

乙组

8

9

10

1)如果,求乙组同学植树棵数的平均数和方差;

2)如果,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】取数游戏:每次游戏中,游戏人按动游泳按钮,就从如图:的三个窗口中各弹出一个数字,其中:最左边窗口可随机弹出数字4或3,中间窗口可随机弹出3或2,最右边窗口可随机弹出2或1.若弹出的三个数字为“顺子”(如:432),则可获奖10元,若有相邻两位数字相同,则可获奖8元,其他情况获奖-2元.甲玩了8次游戏后,乙问甲的获奖情况,甲说:“23元有余,28元不足,3除不尽.”那么甲在这8次游戏中得到“顺子”、“相邻两位数字相同”、“其他情况”的次数依次为( )

A. 0,4,4 B. 2,2,4 C. 2,3,3 D. 1,3,4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个相同的小球放到三个编号为的盒子中,且每个盒子内的小球数要多于盒子的编号数,则共有多少种放法( )

A. B. C. D.

查看答案和解析>>

同步练习册答案