精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式x3-2ax2+3x(x∈R).
(1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;
(2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.

解:(1)设切线的斜率为k,则k=f′(x)=2x2-4x+3=2(x-1)2+1,当x=1时,kmin=1.
把a=1代入到f(x)中得:f(x)=x3-2x2+3x,所以f(1)=-2+3=,即切点坐标为(1,
∴所求切线的方程为y-=x-1,即3x-3y+2=0.
(2)f′(x)=2x2-4ax+3,因为y=f(x)为单调递增函数,则对任意的x∈(0,+∞),恒有f′(x)>0,
f′(x)=2x2-4ax+3>0,
∴a<=+,而+,当且仅当x=时,等号成立.
所以a<,则所求满足条件的最大整数a值为1.
分析:(1)设出切线的斜率k,得到k等于f′(x)并把a=1代入到f(x)中求出解析式,根据二次函数求最小值的方法,求出k的最小值,然后把x=1代入到f(x)中求出f(1)的值即可得到切点坐标,根据斜率和切点坐标写出切线方程即可;
(2)求出f′(x),要使f(x)为单调递增函数,必须满足f'(x)>0,即对任意的x∈(0,+∞),恒有f′(x)大于0,解出a小于一个关系式,利用基本不等式求出这个关系式的最小值,得到关于a的不等式,求出解集即可得到a的取值范围,在范围中找出满足条件的最大整数即可.
点评:此题是一道综合题,要求学生会根据导数求出切线的斜率,掌握不等式恒成立时所取的条件,利用会利用基本不等式求函数的最小值及会求二次函数的最小值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案