精英家教网 > 高中数学 > 题目详情
11.已知A(-2,-3),B(3,1),直线l:y=kx+1与线段AB相交,则k取值范围为(-∞,0]∪[2,+∞).

分析 由题意画出图形,求出直线l与线段AB端点连线的斜率,则答案可求.

解答 解:直线l:y=kx+1过定点P(0,1),
如图:

∵${k}_{PB}=0,{k}_{PA}=\frac{-3-1}{-2-0}=2$,
∴使直线l:y=kx+1与线段AB相交的k的取值范围为(-∞,0]∪[2,+∞).
故答案为:(-∞,0]∪[2,+∞).

点评 本题考查直线的斜率,考查数形结合的解题思想方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知x1,x2,x3,x4为实数,且x1+x2+x3+x4=6,x12+x22+x32+x42=12,求证:0≤xi≤3,i=1,2,3,4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=$\frac{1}{{x}^{3}}$的单调递减区间是(  )
A.(-∞,+∞)B.(-∞,0),(0,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{an}是首项为2,公比为2的等比数列,则使log2a1+log2a2+log2a3+…+log2an>100成立的最小自然数n=14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算:($\frac{1}{300}$)${\;}^{-\frac{1}{2}}$+10×($\frac{\sqrt{3}}{2}$)${\;}^{\frac{1}{2}}$×($\frac{27}{4}$)${\;}^{\frac{1}{4}}$-10×($\frac{2}{3}$)-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知10m=2,10n=3,计算$1{0}^{\frac{3m-2n}{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(-1,$\sqrt{3}$cosθ),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,其中θ∈(0,$\frac{π}{2}$).
(1)求θ的值;
(2)若cos(ω-θ)=$\frac{3}{5}$,0<ω<$\frac{π}{2}$,求sinω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若集合A={x|x≥3,x∈R},集合B={y|y=2x2+c,x∈R},且A=B,求实数c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若$\sqrt{{x}^{2}-8x+16}$=x-4,则实数x的取值范围是[4,+∞).

查看答案和解析>>

同步练习册答案