A. | (0,$\frac{1}{4}$] | B. | (0,1) | C. | [$\frac{1}{4}$,1) | D. | (0,$\frac{3}{4}$] |
分析 由已知可得函数f(x)=$\left\{\begin{array}{l}{{a}^{x},(x<1)}\\{(a-3)x+4a,(x≥1)}\end{array}\right.$为减函数,则$\left\{\begin{array}{l}0<a<1\\ a-3<0\\ a≥a-3+4a\end{array}\right.$,解得答案.
解答 解:∵对任意x1,x2(x1≠x2),都有(x1-x2)[f(x1)-f(x2)]<0成立,
∴函数f(x)=$\left\{\begin{array}{l}{{a}^{x},(x<1)}\\{(a-3)x+4a,(x≥1)}\end{array}\right.$为减函数,
∴$\left\{\begin{array}{l}0<a<1\\ a-3<0\\ a≥a-3+4a\end{array}\right.$,
解得:a∈(0,$\frac{3}{4}$],
故选:D.
点评 本题考查的知识点是分段函数的应用,正确理解分段函数的单调性,是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
几何题 | 代数题 | 总计 | |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com