【题目】(1)在等差数列中,已知,前项和为,且,求当取何值时, 取得最大值,并求出它的最大值;
(2)已知数列的通项公式是,求数列的前项和.
【答案】(1)当或时, 取得最大值为(2)
【解析】试题分析:(1)由已知得,从而,进而求出,根据二次函数的性质可得当或时, 取得最大值;(2)由已知得是首项为,公差为的等差数列,从而数列的前项和,由,得,从而时, 时, ,由此能求出数列的前项和.
试题解析: (1)方法一 ∵a1=20,S10=S15,
∴10×20+d=15×20+d,∴d=-.
∴an=20+(n-1)×=-n+.
∴a13=0,即当n≤12时,an>0,n≥14时,an<0,
∴当n=12或13时,Sn取得最大值,且最大值为S13=S12=12×20+=130.
(2)∵an=4n-25,an+1=4(n+1)-25,∴an+1-an=4=d,又a1=4×1-25=-21.
所以数列{an}是以-21为首项,以4为公差的递增的等差数列.
令 ,由①得n<6;由②得n≥5,所以n=6.
即数列{|an|}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列,
而|a7|=a7=4×7-25=3.设{|an|}的前n项和为Tn,则
科目:高中数学 来源: 题型:
【题目】海南省椰树集团引进德国净水设备的使用年限(年)和所需要的维修费用y(千元)的几组统计数据如表:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)请根据上表提供的数据,用最小二乘法求出 关于x的线性回归方程 ;
(2)我们把中(1)的线性回归方程记作模型一,观察散点图发现该组数据也可以用函数模型 =c1ln(c2x)拟合,记作模型二.经计算模型二的相关指数R2=0.64,
①请说明R2=0.64这一数据在线性回归模型中的实际意义.
②计算模型一中的R2的值(精确到0.01),通过数据说明,两种模型中哪种模型的拟合效果好.
参考公式和数值:用最小工乘法求线性回归方程系数公式 = , .R2=1﹣ , =0.651,(2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=lnx+ax2﹣ax+5,a∈R.
(1)若函数f(x)在x=1处有极值,求实数a的值;
(2)若函数f(x)在区间(0,+∞)内单调递增,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对具有线性相关关系的两个变量y与x进行回归分析,得到一组样本数据(x1 , y1),(x2 , y2)…(xn , yn),则下列说法中不正确的是( )
A.若最小二乘法原理下得到的回归直线方程 =0.52x+ ,则y与x具有正相关关系
B.残差平方和越小的模型,拟合的效果越好
C.在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适
D.用相关指数R2来刻画回归效果,R2越小说明拟合效果越好
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},则S∩(CUT)=( )
A.{1,2,4}
B.{1,2,3,4,5,7}
C.{1,2}
D.{1,2,4,5,6,8}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知动圆恒过且与直线相切,动圆圆心的轨迹记为;直线与轴的交点为,过点且斜率为的直线与轨迹有两个不同的公共点, , 为坐标原点.
(1)求动圆圆心的轨迹的方程,并求直线的斜率的取值范围;
(2)点是轨迹上异于, 的任意一点,直线, 分别与过且垂直于轴的直线交于, ,证明: 为定值,并求出该定值;
(3)对于(2)给出一般结论:若点,直线,其它条件不变,求的值(可以直接写出结果).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx(a≠0,a,b为常数)满足f(1﹣x)=f(1+x),且方程f(x)=2x有两个相等实根;设g(x)= x3﹣x﹣f(x).
(1)求f(x)的解析式;
(2)求g(x)在[0,3]上的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场每天以每件100元的价格购入A商品若干件,并以每件200元的价格出售,若所购进的A商品前8小时没有售完,则商场对没卖出的A商品以每件60元的低价当天处理完毕(假定A商品当天能够处理完).该商场统计了100天A商品在每天的前8小时的销售量,制成如表格.
前8小时的销售量t(单位:件) | 5 | 6 | 7 |
频 数 | 40 | 35 | 25 |
(1)若某天该商场共购入7件A商品,在前8个小时售出5件. 若这些产品被7名不同的顾客购买,现从这7名顾客中随机选3人进行回访,记X表示这3人中以每件200元的价格购买的人数,求X的分布列;
(2)将频率视为概率,要使商场每天购进A商品时所获得的平均利润最大,则每天应购进几件A商品,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com