精英家教网 > 高中数学 > 题目详情

在椭圆上到直线l:3x2y16=0距离最短的点的坐标是______,最短距离是______.?

 

答案:
解析:

解:设椭圆上的任意一点为M2cosθ, sinθ)则M点到直线l的距离?

φθ=时,d有最小值

此时,θ=φsinθ=cosφ=,cosθ=sinφ=

M点坐标是(

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,\直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.
(1)求椭圆C的方程;
(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆中心在原点,焦点在坐标轴上,直线l:y=
3
(x+1)
与椭圆相交于A、B两点,若线段AB的中点M到原点的距离为1,且|AB|=2.
(1)求点M坐标;
(2)求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,在x轴负半轴上有一点B,满足AB⊥AF2.且F1为BF2的中点.
(1)求椭圆C的离心率;
(2)D是过A,B,F2三点的圆上的点,D到直线l:x-
3
y-3=0的最大距离等于椭圆长轴的长,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
8
+
y2
2
=1
经过点M(2,1),O为坐标原点,平行于OM的直线l在y轴上的截距为m(m≠0).
(1)当m=3时,判断直线l与椭圆的位置关系(写出结论,不需证明);
(2)当m=3时,P为椭圆上的动点,求点P到直线l距离的最小值;
(3)如图,当l交椭圆于A、B两个不同点时,求证直线MA、MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:椭圆C的中心在原点,焦点在x轴上,焦距为8,且经过点(0,3)
(1)求此椭圆的方程
(2)若已知直线l:4x-5y+40=0,问:椭圆C上是否存在一点,使它到直线l的距离最小?最小距离是多少?

查看答案和解析>>

同步练习册答案