精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数y=f(x)是奇函数,且x>0时,f(x)=ln(x2+2x+2);
(1)求f(x)的解析式;
(2)若方程f(x)-m=0无解,求实数m的取值范围.
考点:函数奇偶性的性质,根的存在性及根的个数判断
专题:函数的性质及应用
分析:(1)利用奇函数的性质即可得出;
(2)利用对数函数的单调性可得函数f(x)的值域,进而得出m的取值范围.
解答: 解:(1)设x<0,则-x>0,
∵x>0时,f(x)=ln(x2+2x+2);
∴f(-x)=ln(x2-2x+2),
又定义在R上的函数y=f(x)是奇函数,
∴f(x)=-f(-x)=-ln(x2-2x+2),f(0)=0.
∴f(x)=
ln(x2+2x+2),x>0
0,x=0
-ln(x2-2x+2),x<0

(2)由(1)可得:x>0时,f(x)=ln[(x+1)2+1]>ln2.
x=0时,f(0)=0.
x<0时,f(x)=-ln[(x-1)2+1]<-ln2.
∴函数f(x)的值域为(-∞,-ln2)∪{0}∪(ln2,+∞).
∵方程f(x)-m=0无解,
∴实数m的取值范围是[-ln2,0)∪(0,ln2].
点评:本题考查了函数的奇偶性、对数函数的单调性、二次函数的单调性,考查了数形结合的思想方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于数集X={-1,x1,x2,…x},其中0<x1<x2<…<xn,n≥2,定义向量集Y={
a
|
a
=(s,t),s∈X,t∈X},若对任意
a1
∈Y,存在
a2
∈Y,使得
a1
a2
=0,则称X具有性质P.
(Ⅰ)判断{-1,1,2}是否具有性质P;
(Ⅱ)若x>2,且{-1,1,2,x}具有性质P,求x的值;
(Ⅲ)若X具有性质P,求证:1∈,且当xn>1时,x1=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-2x-2y=0,且圆中过点(2,3)的最短弦为AB,则直线AB在x轴上的截距为(  )
A、-6B、2C、4D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:y=k(x-2)+2与圆C:x2+y2-2x-2y=0相切,则直线l的斜率为(  )
A、-1B、-2C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

α为第一、二象限角,化简:
sec2α-1
sin(π-α)
+
1+cot2(π+α)
tan(
π
2
+α)
+
2cot(π-α)
csc2α-1

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
6k(k2+1)
(3+4k2)
k2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人各掷一颗质地均匀的骰子,如果所得它们向上的点数之和为偶数,则甲赢,否则乙赢.
(1)求两个骰子向上点数之和为8的事件发生的概率;
(2)这种游戏规则公平吗?试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,且满足f(x+2)[1-f(x)]=1+f(x),f(1)=2,则f(2017)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xOy上的区域D由不等式组
1≤x≤2
y≤2
x≤2y
给定.若M(x,y)为D上的动点,点A的坐标为(2,1),则z=
OA
AM
的最大值为(  )
A、-5B、-1C、1D、0

查看答案和解析>>

同步练习册答案