精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D为CC1中点.
(1)求证:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.

【答案】
(1)证明:∵BC=B1C1=1,CD=C1D= BB1=1,∠BCC1= ,∠B1C1D=π﹣∠BCC1=

∴BD=1,B1D=

∴BB12=BD2+B1D2,∴BD⊥B1D.

∵AB⊥平面BB1C1C,BD平面BB1C1C,

∴AB⊥B1D,又AB平面ABD,BD平面ABD,AB∩BD=B,

∴DB1⊥平面ABD


(2)解:以B为原点,以BB1,BA所在直线为x轴,z轴建立空间直角坐标系B﹣xyz,如图所示:

则A(0,0,2),D( ,0),B1(2,0,0),A1(2,0,2),

=( ,﹣ ,0), =(﹣2,0,2), =(0,0,2).

设平面AB1D的法向量为 =(x1,y1,z1),平面A1B1D的法向量为 =(x2,y2,z2),

,即

令x1=1得 =(1, ,1),令x2=1得 =(1, ,0).

∴cos< >= = =

∵二面角A﹣B1D﹣A1是锐角,

∴二面角A﹣B1D﹣A1的平面角的余弦值为


【解析】(1)利用余弦定理计算BD,B1D,再由勾股定理的逆定理得出BD⊥B1D,由AB⊥平面BB1C1C得出AB⊥B1D,于是得出B1D⊥平面ABD;(2)以B为原点建立坐标系,求出平面AB1D的法向量 ,平面A1B1D的法向量 ,计算cos< >即可得出二面角的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列两个命题:命题p1a,b∈(0,+∞),当a+b=1时, + =4;命题p2:函数y=ln 是偶函数.则下列命题是真命题的是(
A.p1∧p2
B.p1∧(¬p2
C.(¬p1)∨p2
D.(¬p1)∨(¬p2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,则在这个新数列中,由1开始的第2 019个数是(  )

A. 3 971B. 3 972C. 3 973D. 3 974

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆C与x轴相切于点T(2,0),与y轴的正半轴相交于A,B两点(A在B的上方),且AB=3.

(1)求圆C的方程;

(2)直线BT上是否存在点P满足PA2+PB2+PT2=12,若存在,求出点P的坐标,若不存在,请说明理由;

(3)如果圆C上存在E,F两点,使得射线AB平分∠EAF,求证:直线EF的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某颜料公司生产A,B两种产品,其中生产每吨A产品,需要甲染料1吨,乙染料4吨,丙染料2吨,生产每吨B产品,需要甲染料1吨,乙染料0吨,丙染料5吨,且该公司一条之内甲、乙、丙三种染料的用量分别不超过50吨、160吨和200吨,如果A产品的利润为300元/吨,B产品的利润为200元/吨,则该颜料公司一天之内可获得的最大利润为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为 ρcos(θ+ )﹣1=0,曲线C的参数方程是 (t为参数).
(1)求直线l和曲线C的普通方程;
(2)设直线l与曲线C交于A,B两点,求 +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下面四个推理:

①由“若是实数,则”推广到复数中,则有“若是复数,则”;

②由“在半径为R的圆内接矩形中,正方形的面积最大”类比推出“在半径为R的球内接长方体中,正方体的体积最大”;

③以半径R为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;

④由“直角坐标系中两点的中点坐标为”类比推出“极坐标系中两点的中点坐标为”.

其中,推理得到的结论是正确的个数有( )个

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乡大学生携手回乡创业,他们引进某种果树在家乡进行种植试验.他们分别在五种不同的试验田中种植了这种果树100株并记录了五种不同的试验田中果树的死亡数,得到如下数据:

试验田

试验田1

试验田2

试验田3

试验田4

试验田5

死亡数

23

32

24

29

17

(Ⅰ)求这五种不同的试验田中果树的平均死亡数;

(Ⅱ)从五种不同的试验田中随机取两种试验田的果树死亡数,记为x,y,用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):

空气质量指数

(0,50]

(50,100]

(100,150]

(150,200]

(200,250]

(250,300]

空气质量等级

1级优

2级良

3级轻度污染

4级中度污染

5级重度污染

6级严重污染

该社团将该校区在2016年100天的空气质量指数监测数据作为样本,绘制的频率分布直方图如图,把该直方图所得频率估计为概率.

(Ⅰ)请估算2017年(以365天计算)全年空气质量优良的天数(未满一天按一天计算);
(Ⅱ)该校2017年6月7、8、9日将作为高考考场,若这三天中某天出现5级重度污染,需要净化空气费用10000元,出现6级严重污染,需要净化空气费用20000元,记这三天净化空气总费用为X元,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案