精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=lnxsinx+axa0).

1)若a1,求证:当x1)时,fx)<2x1

2)若fx)在(02π)上有且仅有1个极值点,求a的取值范围.

【答案】1)详见解析;(2)(01).

【解析】

1)构造函数gx)=fx)﹣(2x1),对其求导研究其在x单调性,即可证明结论;

2)先对fx)求导,然后把fx)在(02π)上有且仅有1个极值点转化为的零点问题,利用ya0)与函数ycosxx0)的图象只有一个交点求出a的取值范围即可.

解:(1)证明:当a1时,fx)=lnxsinx+x,令gx)=fx)﹣(2x1)=lnxsinxx+1x

,∴gx)在(1)上单调递减,

gx)<g1)=﹣sin10,所以fx)<2x1

2)解:由题知,令,所以

在(0,2π)上有且仅有1个极值点,

∴函数ya0)与函数ycosxx0)的图象只有一个交点,

,即

所以a的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列选项中说法正确的是(

A.函数的单调减区间为

B.命题的否定是

C.在三角形中,,则的逆否命题是真命题

D.幂函数过点,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面向量共线的充要条件是(

A.

B.两向量中至少有一个为零向量

C.λR

D.存在不全为零的实数λ1λ2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1ab0)的一个顶点坐标为A0,﹣1),离心率为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)若直线y=kx1)(k0)与椭圆C交于不同的两点PQ,线段PQ的中点为M,点B10),求证:点M不在以AB为直径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式e2xalnxa恒成立,则实数a的取值范围是(

A.[02e]B.(﹣∞,2e]C.[02e2]D.(﹣∞,2e2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,分别为棱的中点,平面,则(

A.三棱锥的体积为

B.直线与直线垂直

C.平面截三棱锥所得的截面面积为

D.与点到平面的距离相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线在y轴上的截距为.

1)求a

2)讨论函数的单调性;

3)设,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定数列,记该数列前中的最大项为,该数列后 …..中的最小项为.

1)对于数列:3471,求出相应的

2是数列的前项和,若对任意,有,其中

①设,判断数列是否为等比数列;

②若数列对应的满足:对任意的正整数恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实现2020年全面建设小康社会,某地进行产业的升级改造.经市场调研和科学研判,准备大规模生产某高科技产品的一个核心部件,目前只有甲、乙两种设备可以独立生产该部件.如图是从甲设备生产的部件中随机抽取400件,对其核心部件的尺寸x,进行统计整理的频率分布直方图.

根据行业质量标准规定,该核心部件尺寸x满足:|x12|≤1为一级品,1<|x12|≤2为二级品,|x12|>2为三级品.

(Ⅰ)现根据频率分布直方图中的分组,用分层抽样的方法先从这400件样本中抽取40件产品,再从所抽取的40件产品中,抽取2件尺寸x∈[1215]的产品,记ξ为这2件产品中尺寸x∈[1415]的产品个数,求ξ的分布列和数学期望;

(Ⅱ)将甲设备生产的产品成箱包装出售时,需要进行检验.已知每箱有100件产品,每件产品的检验费用为50.检验规定:若检验出三级品需更换为一级或二级品;若不检验,让三级品进入买家,厂家需向买家每件支付200元补偿.现从一箱产品中随机抽检了10件,结果发现有1件三级品.若将甲设备的样本频率作为总体的慨率,以厂家支付费用作为决策依据,问是否对该箱中剩余产品进行一一检验?请说明理由;

(Ⅲ)为加大升级力度,厂家需增购设备.已知这种产品的利润如下:一级品的利润为500元/件;二级品的利润为400元/件;三级品的利润为200元/件.乙种设备产品中一、二、三级品的概率分别是.若将甲设备的样本频率作为总体的概率,以厂家的利润作为决策依据.应选购哪种设备?请说明理由.

查看答案和解析>>

同步练习册答案