【题目】已知函数f(x)=lnx﹣sinx+ax(a>0).
(1)若a=1,求证:当x∈(1,)时,f(x)<2x﹣1;
(2)若f(x)在(0,2π)上有且仅有1个极值点,求a的取值范围.
【答案】(1)详见解析;(2)(0,1).
【解析】
(1)构造函数g(x)=f(x)﹣(2x﹣1),对其求导研究其在x单调性,即可证明结论;
(2)先对f(x)求导,然后把f(x)在(0,2π)上有且仅有1个极值点转化为的零点问题,利用y(a>0)与函数y=cosx,x∈(0,)的图象只有一个交点求出a的取值范围即可.
解:(1)证明:当a=1时,f(x)=lnx﹣sinx+x,令g(x)=f(x)﹣(2x﹣1)=lnx﹣sinx﹣x+1,x,
则,∴g(x)在(1,)上单调递减,
故g(x)<g(1)=﹣sin1<0,所以f(x)<2x﹣1;
(2)解:由题知,令,所以.
∵在(0,2π)上有且仅有1个极值点,
∴函数y(a>0)与函数y=cosx,x∈(0,)的图象只有一个交点,
∴,即,
所以a的取值范围为.
科目:高中数学 来源: 题型:
【题目】下列选项中说法正确的是( )
A.函数的单调减区间为;
B.命题“”的否定是“”;
C.在三角形中,“若,则”的逆否命题是真命题
D.幂函数过点,则.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:1(a>b>0)的一个顶点坐标为A(0,﹣1),离心率为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线y=k(x﹣1)(k0)与椭圆C交于不同的两点P,Q,线段PQ的中点为M,点B(1,0),求证:点M不在以AB为直径的圆上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若关于x的不等式e2x﹣alnxa恒成立,则实数a的取值范围是( )
A.[0,2e]B.(﹣∞,2e]C.[0,2e2]D.(﹣∞,2e2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,、、分别为棱、、的中点,平面,,,,则( )
A.三棱锥的体积为
B.直线与直线垂直
C.平面截三棱锥所得的截面面积为
D.点与点到平面的距离相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定数列,记该数列前项中的最大项为,该数列后项,, …..,中的最小项为,.
(1)对于数列:3,4,7,1,求出相应的,,;
(2)是数列的前项和,若对任意,有,其中且,
①设,判断数列是否为等比数列;
②若数列对应的满足:对任意的正整数恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为实现2020年全面建设小康社会,某地进行产业的升级改造.经市场调研和科学研判,准备大规模生产某高科技产品的一个核心部件,目前只有甲、乙两种设备可以独立生产该部件.如图是从甲设备生产的部件中随机抽取400件,对其核心部件的尺寸x,进行统计整理的频率分布直方图.
根据行业质量标准规定,该核心部件尺寸x满足:|x﹣12|≤1为一级品,1<|x﹣12|≤2为二级品,|x﹣12|>2为三级品.
(Ⅰ)现根据频率分布直方图中的分组,用分层抽样的方法先从这400件样本中抽取40件产品,再从所抽取的40件产品中,抽取2件尺寸x∈[12,15]的产品,记ξ为这2件产品中尺寸x∈[14,15]的产品个数,求ξ的分布列和数学期望;
(Ⅱ)将甲设备生产的产品成箱包装出售时,需要进行检验.已知每箱有100件产品,每件产品的检验费用为50元.检验规定:若检验出三级品需更换为一级或二级品;若不检验,让三级品进入买家,厂家需向买家每件支付200元补偿.现从一箱产品中随机抽检了10件,结果发现有1件三级品.若将甲设备的样本频率作为总体的慨率,以厂家支付费用作为决策依据,问是否对该箱中剩余产品进行一一检验?请说明理由;
(Ⅲ)为加大升级力度,厂家需增购设备.已知这种产品的利润如下:一级品的利润为500元/件;二级品的利润为400元/件;三级品的利润为200元/件.乙种设备产品中一、二、三级品的概率分别是,,.若将甲设备的样本频率作为总体的概率,以厂家的利润作为决策依据.应选购哪种设备?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com