精英家教网 > 高中数学 > 题目详情
(2013•海淀区一模)已知函数f(x)=2-(
3
sinx-cosx)2
(Ⅰ)求f(
π
3
)的值和f(x)的最小正周期;
(Ⅱ)求函数在区间[-
π
6
π
3
]上的最大值和最小值.
分析:(I)利用特殊角的三角函数值即可得到f(
π
3
)
,利用倍角公式和两角和差的正弦公式和周期公式即可得出;
(II)由x∈[-
π
6
π
3
]
时,得到(2x+
π
6
)∈[-
π
6
6
]
,再利用正弦函数的单调性即可得到最值.
解答:解:(I)f(
π
3
)=2-(
3
×
3
2
-
1
2
)2
=2-1=1.
∵函数f(x)=2-(
3
sinx-cosx)2
=2-(3sin2x+cos2x-2
3
sinxcosx)

=2-(1+2sin2x-
3
sin2x)

=1-2sin2x+
3
sin2x

=cos2x+
3
sin2x

=2(
3
2
sin2x+
1
2
cos2x)

=2sin(2x+
π
6
)

∴函数f(x)的周期为T=
2

(II)当x∈[-
π
6
π
3
]
时,(2x+
π
6
)∈[-
π
6
6
]

所以当x=-
π
6
时,函数取得最小值f(-
π
6
)=-1

x=
π
6
时,函数取得最大值f(
π
6
)=2
点评:熟练掌握特殊角的三角函数值、倍角公式和两角和差的正弦公式和周期公式、正弦函数的单调性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•海淀区一模)已知a>0,下列函数中,在区间(0,a)上一定是减函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°,点N在线段PB上,且PN=
2

(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC;
(Ⅲ)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又∠CAD=30°,PA=AB=4,点N在线段PB上,且
PN
NB
=
1
3

(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC;
(Ⅲ)设平面PAB∩平面PCD=l,试问直线l是否与直线CD平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)函数f(x)=
13
x3-kx,其中实数k为常数.
(I) 当k=4时,求函数的单调区间;
(II) 若曲线y=f(x)与直线y=k只有一个交点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)已知圆M:(x-
2
2+y2=
7
3
,若椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右顶点为圆M的圆心,离心率为
2
2

(I)求椭圆C的方程;
(II)已知直线l:y=kx,若直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点(其中点G在线段AB上),且|AG|=|BH|,求k的值.

查看答案和解析>>

同步练习册答案