精英家教网 > 高中数学 > 题目详情
已知定义在上的函数,其中为常数.
(1)当是函数的一个极值点,求的值;
(2)若函数在区间上是增函数,求实数的取值范围;
(3)当时,若,在处取得最大值,求实数的取值范围.
(1);(2);(3) .

试题分析:(1) 本小题首先由可得,因为是是函数的一个极值点,所以
(2) 本小题首先利用导数的公式和法则求得,根据函数在区间上是增函数,讨论参数的不同取值对单调性的影响;
(3)本小题首先求得,然后求得导数,然后讨论单调性,求最值即可.
试题解析:(1)由可得
因为是是函数的一个极值点,
所以
(2)①当时,在区间上是增函数,
所以符合题意
②当时,,令
时,对任意的,所以符合题意
时,时,,所以,即符合题意
综上所述,实数的取值范围为
(3)当时,
所以
,即
显然
设方程的两个实根分别为,则
不妨设
时,为极小值
所以上的最大值只能是
时,由于上是递减函数,所以最大值为
所以上的最大值只能是
由已知处取得最大值,所以
,解得
又因为,所以实数的取值范围为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知,函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若函数上单调递增,求实数的取值范围.
(2)记函数,若的最小值是,求函数的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数,过曲线上的点的切线方程为.
(1)若时有极值,求的表达式;
(2)在(1)的条件下,求在[-3,1]上的最大值;
(3)若函数在区间[-2,1]上单调递增,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,若在区间上的最小值为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图象与轴交于两点,且,又的导函数.若正常数满足条件,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的导函数是二次函数,当时,有极值,且极大值为2,.
(1)求函数的解析式;
(2)有两个零点,求实数的取值范围;
(3)设函数,若存在实数,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x(ln xax)有两个极值点,则实数a的取值范围是(  ).
A.(-∞,0) B.(0,)C.(0,1)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知不等式的解集,则函数单调递增区间为(    )
A.(-B.(-1,3)C.( -3,1)D.(

查看答案和解析>>

同步练习册答案