精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,直线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.

【答案】1;(2.

【解析】

1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以,进而可化简得出曲线的直角坐标方程;

2)根据变换得出的普通方程为,可设点的坐标为,利用点到直线的距离公式结合正弦函数的有界性可得出结果.

1)由为参数),得,化简得

故直线的普通方程为.

,得,又.

所以的直角坐标方程为

2)由(1)得曲线的直角坐标方程为,向下平移个单位得到

纵坐标不变,横坐标变为原来的倍得到曲线的方程为

所以曲线的参数方程为为参数).

故点到直线的距离为

时,最小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】克拉茨猜想又称猜想,是德国数学家洛萨·克拉茨在1950年世界数学家大会上公布的一个猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,就将它乘31,不断重复这样的运算,经过有限步后,最终都能够得到1.已知正整数经过7次运算后首次得到1,则的所有不同取值的集合为____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数列满足,则下面说法正确的是(

A.,则2019项中至少有1010个值相等

B.,则当确定时,一定存在实数使恒成立

C.一定为等比数列

D.,则当确定时,一定存在实数使恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,函数在区间上的最小值为-5,求的值;

(Ⅱ)设,且有两个极值点.

(i)求实数的取值范围;

(ii)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为常数,是自然对数的底数)。

1)当时,求函数的单调区间;

2)若函数内存在唯一极值点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12)

已知函数(其中a是实数).

(1)求的单调区间;

(2)若设,且有两个极值点 ,求取值范围.(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系xOy中,曲线C的参数方程为a为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.

1)求C的普通方程和l的倾斜角;

2)设点lC交于AB两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网上购物的普及,传统的实体店遭受到了强烈的冲击,某商场实体店近九年来的纯利润如下表所示:

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

时间代号

1

2

3

4

5

6

7

8

9

实体店纯利润(千万)

2

2.3

2.5

2.9

3

2.5

2.1

1.7

1.2

根据这9年的数据,对作线性相关性检验,求得样本相关系数的绝对值为0.254;根据后5年的数据,对作线性相关性检验,求得样本相关系数的绝对值为0.985;

(1)如果要用线性回归方程预测该商场2019年实体店纯利润,现有两个方案:

方案一:选取这9年的数据,进行预测;

方案二:选取后5年的数据进行预测.

从生活实际背景以及相关性检验的角度分析,你觉得哪个方案更合适.

附:相关性检验的临界值表:

小概率

0.05

0.01

3

0.878

0.959

7

0.666

0.798

(2)某机构调研了大量已经开店的店主,据统计,只开网店的占调查总人数的,既开网店又开实体店的占调查总人数的,现以此调查统计结果作为概率,若从上述统计的店主中随机抽查了5位,求只开实体店的人数的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若在区间上有两个零点,求的取值范围.

查看答案和解析>>

同步练习册答案