分析 (1)设等差数列的公差为d,运用求和公式,计算可得d=4,再由通项公式即可得到所求;
(2)由$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(4n-3)×(4n+1)}$=$\frac{1}{4n-3}$-$\frac{1}{4n+1}$,由裂项相消求和即可得到所求值.
解答 (1)解:设等差数列的公差为d,
由a1=1,S5=45,可得45=5+$\frac{1}{2}$×5×4d,
解得d=4,
则an=4n-3;
(2)证明:由$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(4n-3)×(4n+1)}$=$\frac{1}{4n-3}$-$\frac{1}{4n+1}$,
则Tn=$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$
=$\frac{1}{1×5}$+$\frac{1}{5×9}$+$\frac{1}{9×13}$+…+$\frac{1}{(4n-3)×(4n+1)}$
=$\frac{1}{4}$(1-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{9}$+$\frac{1}{9}$-$\frac{1}{13}$+…+$\frac{1}{4n-3}$-$\frac{1}{4n+1}$)
=$\frac{1}{4}$(1-$\frac{1}{4n+1}$)=$\frac{n}{4n+1}$.
点评 本题考查等差数列的通项和求和公式的运用,考查数列的求和方法:裂项相消求和,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源:2016-2017学年安徽豪州蒙城县一中高二上月考一数学试卷(解析版) 题型:选择题
一个等比数列的前项和为45,前项和为60,则前项和为( )
A.85 B.108 C.73 D.65
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {(0,0),(2,4)} | B. | {0,4} | C. | [0,+∞) | D. | R |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com