3£®¸ø³öÏÂÁÐÃüÌ⣺
¢Ùº¯Êý$f£¨x£©=\sqrt{1-x}+\sqrt{x-1}$¼ÈÊÇÆ溯Êý£¬ÓÖÊÇżº¯Êý£»
¢Úf£¨x£©=xºÍ$g£¨x£©=\frac{x^2}{x}$Ϊͬһº¯Êý£»
¢Û¶¨ÒåÔÚRÉϵÄÆ溯Êýf£¨x£©ÔÚ£¨-¡Þ£¬0£©Éϵ¥µ÷µÝ¼õ£¬Ôòf£¨x£©ÔÚ£¨-¡Þ£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£»
¢Üº¯Êý$y=\frac{x}{{2{x^2}+1}}$µÄÖµÓòΪ$[-\frac{{\sqrt{2}}}{4}£¬\frac{{\sqrt{2}}}{4}]$£»
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊǢܣ®£¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©

·ÖÎö »¯¼òº¯Êý½âÎöʽÅжϢ٣»Óɺ¯ÊýµÄ¶¨ÒåÓò²»Í¬ÅжϢڣ»¾ÙÀý˵Ã÷¢Û´íÎó£»·ÖÀàÇó½âº¯ÊýµÄÖµÓòÅжϢܣ®

½â´ð ½â£º¶ÔÓÚ¢Ù£¬ÓÉ$\left\{\begin{array}{l}{1-x¡Ý0}\\{x-1¡Ý0}\end{array}\right.$£¬µÃx=1£¬¡à$f£¨x£©=\sqrt{1-x}+\sqrt{x-1}$=0£¨x=1£©£¬
Ôòº¯Êý$f£¨x£©=\sqrt{1-x}+\sqrt{x-1}$¼È²»ÊÇÆ溯Êý£¬Ò²²»ÊÇżº¯Êý£®¹Ê¢Ù´íÎó£»
¶ÔÓÚ¢Ú£¬f£¨x£©=xµÄ¶¨ÒåÓòΪR£¬$g£¨x£©=\frac{x^2}{x}$µÄ¶¨ÒåÓòΪ{x|x¡Ù0}£¬¡àf£¨x£©=xºÍ$g£¨x£©=\frac{x^2}{x}$²»ÊÇͬһº¯Êý£®¹Ê¢Ú´íÎó£»
¶ÔÓÚ¢Û£¬¶¨ÒåÔÚRÉϵÄÆ溯Êýf£¨x£©ÔÚ£¨-¡Þ£¬0£©Éϵ¥µ÷µÝ¼õ£¬Ôòf£¨x£©ÔÚ£¨-¡Þ£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬´íÎó£®Èç$f£¨x£©=\left\{\begin{array}{l}{0£¬x=0}\\{\frac{1}{x}£¬x¡Ù0}\end{array}\right.$£»
¶ÔÓڢܣ¬º¯Êý$y=\frac{x}{{2{x^2}+1}}$£¬µ±x=0ʱ£¬y=0£»µ±x£¾0ʱ£¬y=$\frac{1}{2x+\frac{1}{x}}¡Ê£¨0£¬\frac{\sqrt{2}}{4}]$£»µ±x£¼0ʱ£¬$y=\frac{1}{2x+\frac{1}{x}}¡Ê[-\frac{\sqrt{2}}{4}£¬0£©$£®
¡àº¯Êý$y=\frac{x}{{2{x^2}+1}}$µÄÖµÓòΪ$[-\frac{{\sqrt{2}}}{4}£¬\frac{{\sqrt{2}}}{4}]$£®¹Ê¢ÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ü£®

µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²éÁ˺¯ÊýµÄÆæżÐԺ͵¥µ÷ÐÔ£¬ÑµÁ·Á˺¯ÊýÖµÓòµÄÇ󷨣¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èô$\frac{1}{a}£¼\frac{1}{b}£¼0$£¬ÓÐÏÂÃæËĸö²»µÈʽ£º¢Ù|a|£¾|b|£»¢Úa£¼b£»¢Ûa+b£¼ab£¬¢Üa3£¾b3£¬ÕýÈ·µÄ²»µÈʽµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÇóÏÂÁк¯ÊýµÄÖµÓò£º
¢Ùy=sin£¨3x+$\frac{¦Ð}{6}$£©£¨-$\frac{¦Ð}{6}¡Üx¡Ü\frac{¦Ð}{6}$£©£»
¢Úy=2sin£¨2x+$\frac{¦Ð}{6}$£©£¬x$¡Ê[-\frac{¦Ð}{6}£¬\frac{¦Ð}{3}]$£»
¢Ûy=sin£¨$\frac{¦Ð}{4}-2x$£©£¨$-\frac{¦Ð}{4}¡Üx¡Ü\frac{¦Ð}{4}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®½«º¯Êýg£¨x£©=sin£¨¦Øx-¦Õ£©£¨¦Ø£¾0£¬0£¼¦Õ£¼¦Ð£©µÄͼÏóÉϸ÷µãµÄºá×ø±êÉ쳤ΪԭÀ´µÄ2±¶£¨×Ý×ø±ê²»±ä£©ÔÙÏò×óƽÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶ÈºóµÃµ½º¯Êýy=f£¨x£©Í¼Ïó£¬Èôº¯Êýf£¨x£©µÄͼÏó¹ýµã£¨$\frac{¦Ð}{6}$£¬0£©£¬ÇÒÏàÁÚÁ½¶Ô³ÆÖáµÄ¾àÀëΪ$\frac{¦Ð}{2}$£®
£¨1£©Çó¦Ø£¬¦ÕµÄÖµ£»
£¨2£©Çóy=f£¨x£©µÄµ¥µ÷ÔöÇø¼ä
£¨3£©Èô$\frac{¦Ð}{6}$£¼A£¼$\frac{¦Ð}{2}$£¬Çóf£¨A£©µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªº¯Êý$f£¨x£©=\left\{{\begin{array}{l}{£¨1-a£©x+3a£¬x£¼e}\\{lnx£¬x¡Ýe}\end{array}}\right.$£¨eΪ×ÔÈ»¶ÔÊýµÄµ×£©µÄÖµÓòΪR£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$[\frac{e}{e-3}£¬1]$B£®$[\frac{e}{e-3}£¬1£©$C£®$[\frac{1-e}{3-e}£¬1]$D£®$[\frac{1-e}{3-e}£¬1£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄÆ溯Êý£¬ÇÒµ±x¡Ü0ʱ£¬f£¨x£©=x2+2x£¬Ôòº¯Êýf£¨x£©£¬x¡ÊRµÄ½âÎöʽΪf£¨x£©=$\left\{\begin{array}{l}{x}^{2}+2x£¬£¨x¡Ü0£©\\-{x}^{2}+2x£¬£¨x£¾0£©\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Ô²C1£»x2+y2+2x+8y-8=0ÓëÔ²C2£»x2+y2-4x+4y-8=0µÄλÖùØϵÊÇ£¨¡¡¡¡£©
A£®ÏཻB£®ÍâÇÐC£®ÄÚÇÐD£®ÏàÀë

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ô²ÐÄMÔÚÖ±Ïßy=xÉÏ£¬Ô²ÓëÖ±Ïßx-2y+6=0ÏàÇÐÓڵ㣨0£¬3£©£®
£¨1£©ÇóÔ²MµÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl£ºx-y+b=0ÓëÔ²MÏཻÓÚ²»Í¬Á½µãA¡¢B£¬Çó$\overrightarrow{OA}$•$\overrightarrow{OB}$µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=x2-2ax+2lnx£¬
£¨1£©ÈôÇúÏßy=f£¨x£©ÔÚx=1´¦µÄÇÐÏßÓëÖ±Ïßy=2x+4ƽÐУ¬ÊÔÇóʵÊýaµÄÖµ£»
£¨2£©Èôº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÉÏΪÔöº¯Êý£¬ÊÔÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©Èôy=f£¨x£©ÓÐÁ½¸ö¼«Öµµãx1£¬x2£¬ÇÒx1£¼x2£¬a¡Ý$\frac{5}{2}$£®Èô²»µÈʽf£¨x1£©¡Ýmx2ºã³ÉÁ¢£¬ÊÔÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸