分析 根据“五点法”作图的步骤,我们令相位角x-$\frac{π}{6}$分别等0,$\frac{π}{2}$,π,$\frac{3π}{2}$,2π,并求出对应的x,y值,描出五点后,用平滑曲线连接后,即可得到函数y=sin(x-$\frac{π}{6}$)的一个周期内的简图.
解答 解:列表:
x-$\frac{π}{6}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{6}$ | $\frac{2π}{3}$ | $\frac{7π}{6}$ | $\frac{10π}{6}$ | $\frac{13π}{6}$ |
y=sin(x-$\frac{π}{6}$) | 0 | 1 | 0 | -1 | 0 |
点评 本题考查的知识点是五点法作函数y=Asin(ωx+φ)的图象,其中描出五个关键点的坐标是解答本题的关键,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{7}{4}$ | C. | $\frac{11}{4}$ | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\frac{1}{2}$ | C. | -2 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=x与$y=\sqrt{x^2}$ | B. | y=x+1与$y=\frac{{{x^2}-1}}{x-1}$ | ||
C. | $y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$与y=0 | D. | y=x与$y=\root{3}{{x}^{3}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
商店名称 | A | B | C | D | E |
销售额(x)/千万元 | 3 | 5 | 6 | 7 | 9 |
利润(y)/百万元 | 2 | 3 | 3 | 4 | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com