精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.

1)求椭圆的方程;

2)矩形轴右侧,且顶点在直线上,顶点在椭圆上,若矩形的面积为,求直线的方程.

【答案】12.

【解析】

1由题设条件知,再由直线与圆相切,知,由此可求出椭圆的方程.

2)设直线,联立直线与椭圆方程,消元列出韦达定理,利用弦长公式得到,再由两平行线之间的距离公式得到,则,得到方程,最后根据函数的单调性及特殊值得出参数的值,即可得解;

解:(1)由已知得,圆点到直线的距离

所以

解得.

所以的方程为:.

2)设直线

代入……

,解得

可得

由两平行线之间的距离公式可得

可得

,其中

则函数上单调递减.

,故,因此直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.

(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

55

合计

(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,椭圆上一点到左右两个焦点的距离之和是4.

(1)求椭圆的方程;

(2)已知过的直线与椭圆交于两点,且两点与左右顶点不重合,若,求四边形面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)恒成立,求实数的取值范围;

(Ⅲ)求整数的值,使函数在区间上有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某糕点房推出一类新品蛋糕,该蛋糕的成本价为4元,售价为8元.受保质期的影响,当天没有销售完的部分只能销毁.经过长期的调研,统计了一下该新品的日需求量.现将近期一个月(30天)的需求量展示如下:

日需求量x

20

30

40

50

天数

5

10

10

5

(1)从这30天中任取两天,求两天的日需求量均为40个的概率.

(2)以上表中的频率作为概率,列出日需求量的分布列,并求该月的日需求量的期望.

(3)根据(2)中的分布列求得当该糕点房一天制作35个该类蛋糕时,对应的利润的期望值为;现有员工建议扩大生产一天45个,求利用利润的期望值判断此建议该不该被采纳.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)log4(4x1)kx(k∈R)是偶函数.

(1)k的值;

(2)g(x)log4,若函数f(x)g(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:

p:是“直线不过第四象限”的充分不必要条件;

q:复数在复平面内所对应的点在第二象限;

r:直线平面,平面平面,则直线∥平面

s:若的值越大其图象越高瘦.

则四个命题中真命题的个数是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体OABC的三条棱OAOBOC两两垂直,OA=OB=2OC=3D为四面体OABC外一点.给出下列命题.

不存在点D,使四面体ABCD有三个面是直角三角形

不存在点D,使四面体ABCD是正三棱锥

存在点D,使CDAB垂直并且相等

存在无数个点D,使点O在四面体ABCD的外接球面上

其中真命题的序号是

查看答案和解析>>

同步练习册答案